A mechanism for the formation of the Schiff base between an acetaldehyde and an amine-phospholipid monolayer model based on Dmol3/density functional theory calculations under periodic boundary conditions was constructed. This is the first time such a system has been modeled to examine its chemical reactivity at this computation level. Each unit cell contains two phospholipid molecules, one acetaldehyde molecule, and nine water molecules. One of the amine-phospholipid molecules in the cell possesses a neutral amino group that is used to model the nucleophilic attack on the carboxyl group of acetaldehyde, whereas the other has a charged amino group acting as a proton donor. The nine water molecules form a hydrogen bond network along the polar heads of the phospholipids that facilitates very fast proton conduction at the interface. Using periodic boundary conditions afforded proton transfer between different cells. The reaction takes place in two steps, namely, (1) formation of a carbinolamine and (2) its dehydration to the Schiff base. The carbinolamine is the primary reaction intermediate, and dehydration is the rate-determining step of the process, consistent with available experimental evidence for similar reactions. On the basis of the results, the cell membrane surface environment may boost phospholipid glycation via a neighboring catalyst effect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp1088367DOI Listing

Publication Analysis

Top Keywords

periodic boundary
12
boundary conditions
12
schiff base
12
monolayer model
8
functional theory
8
water molecules
8
amino group
8
reactivity phospholipid
4
phospholipid monolayer
4
model periodic
4

Similar Publications

Systematic Study of Hard-Wall Confinement-Induced Effects on Atomic Electronic Structure.

J Phys Chem A

January 2025

Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A.I. Virtanens Plats 1, University of Helsinki FI-00014, Finland.

We point out that although a litany of studies have been published on atoms in hard-wall confinement, they have either not been systematic, having only looked at select atoms and/or select electron configurations, or they have not used robust numerical methods. To remedy the situation, we perform in this work a methodical study of atoms in hard-wall confinement with the HelFEM program, which employs the finite element method that trivially implements the hard-wall potential, guarantees variational results, and allows for easily finding the numerically exact solution. Our fully numerical calculations are based on nonrelativistic density functional theory and spherically averaged densities.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

Synaptic plasticity plays a fundamental role in neuronal dynamics, governing how connections between neurons evolve in response to experience. In this study, we extend a network model of θ-neuron oscillators to include a realistic form of adaptive plasticity. In place of the less tractable spike-timing-dependent plasticity, we employ recently validated phase-difference-dependent plasticity rules, which adjust coupling strengths based on the relative phases of θ-neuron oscillators.

View Article and Find Full Text PDF

Generosity through donation plays a crucial role in reducing inequality and influencing human behavior. However, previous research on donation has overlooked individuals' acceptance of the extent of inequality, which acts as a trigger for donation. To address this gap, this paper systematically explores the impact of donation based on inequality tolerance on the evolution of cooperation in spatial public goods game.

View Article and Find Full Text PDF

Introduction: The global prevalence of antimicrobial resistance transcends geographical and economic boundaries, affecting populations worldwide. Excessive and incorrect use of antibiotics encourages antimicrobial resistance which leads to complex treatment strategies for infectious diseases and possible failure of treatment. The incorrect and unnecessary prescribing of antibiotics places a burden on healthcare costs and thus, antimicrobial resistance is evident globally as a major public health concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!