A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism of proton relaxation for enzyme-manipulated, multicomponent gold-magnetic nanoparticle chains. | LitMetric

Longitudinal and transverse relaxation times of multicomponent nanoparticle (NP) chains are investigated for their potential use as multifunctional imaging agents in magnetic resonance imaging (MRI). Gold NPs (ca. 5 nm) are arranged linearly along double-stranded DNA, creating gold NP chains. After cutting gold NP chains with restriction enzymes (EcoRI or BamHI), multicomponent NP chains are formed through a ligation reaction with enzyme-cut, superparamagnetic NP chains. We evaluate the changes in relaxation times for different constructs of gold-iron oxide NP chains and gold-cobalt iron oxide NP chains using 300 MHz (1)H NMR. In addition, the mechanism of proton relaxation for multicomponent NP chains is examined. The results indicate that relaxation times are dependent on the one-dimensional structure and the amount of superparamagnetic NP chains present in the multicomponent constructs. Multicomponent NP chains arranged on double-stranded DNA provide a feasible method for fabrication of multifunctional imaging agents that improve relaxation times effectively for MRI applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201000397DOI Listing

Publication Analysis

Top Keywords

relaxation times
16
multicomponent chains
12
chains
11
mechanism proton
8
proton relaxation
8
nanoparticle chains
8
multifunctional imaging
8
imaging agents
8
double-stranded dna
8
gold chains
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!