We describe ante- and postnatal imaging of a 1-year-old otherwise healthy girl with Raine syndrome. She presented with neonatal respiratory distress related to a pyriform aperture stenosis, which was diagnosed on CT. Signs of chondrodysplasia punctata, sagittal vertebral clefting and intervertebral disc and renal calcifications were also found on imaging. This new case confirms that Raine syndrome is not always lethal. The overlapping imaging signs with chondrodysplasia punctata and the disseminated calcifications give new insights into its pathophysiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00247-010-1875-4 | DOI Listing |
Sci Rep
April 2024
Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects.
View Article and Find Full Text PDFPLoS Pathog
February 2024
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America.
Prenat Diagn
March 2024
Perinatal Diagnostic Center, Stanford Children's Health, Stanford, California, USA.
Raine syndrome (MIM 259775) is a rare autosomal recessive disorder, first described by Raine et al. in 1989, with an estimated prevalence of <1/1,000,000. This is due to pathogenic variants in FAM20C characterized by osteosclerosis, typical craniofacial features, and brain calcifications.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2023
Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS).
View Article and Find Full Text PDFJ Cell Physiol
November 2023
Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
Family with sequence similarity 20-member C (FAM20C) is a kinase specific to most of the secreted phosphoproteome. FAM20C has been identified as the causative gene of Raine syndrome, initially characterized by lethal osteosclerosis bone dysplasia. However, since the identification of the cases of nonlethal Raine syndrome characterized by hypophosphatemia rickets, the previous definition of Raine syndrome has become debatable and raised a question about the role of mutations of FAM20C in controversial skeletal manifestation in the two forms of the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!