N-Methyl-D-aspartate (NMDA) receptors have been implicated in epileptogenesis, but how these receptors contribute to epilepsy remains unknown. In particular, their role is likely to be complicated because of their voltage-dependent behavior. Here, the authors investigate how activation of NMDA receptors can affect the intrinsic production of oscillation and the resonance properties of neocortical pyramidal neurons from children with intractable epilepsy. Intracellular whole-cell patch clamp recordings in cortical slices from these patients revealed that pyramidal neurons do not produce spontaneous oscillation under control conditions. However, they did exhibit resonance around 1.5 Hz. On NMDA receptor activation, with bath-applied NMDA (10 μM), the majority of neurons produced voltage-dependent intrinsic oscillation associated with a change in the stability of the neuronal system as reflected by the whole-cell I-V curve. Furthermore, the degree of resonance was amplified while the frequency of resonance was shifted to lower frequencies (∼1 Hz) in NMDA. These results suggest that NMDA receptors may both promote the production of low-frequency oscillation and sharpen the response of the cell to lower frequencies. Both these behaviors may be amplified in tissue from patients with epilepsy, resulting in an increased propensity to generate seizures.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNP.0b013e3182007c7dDOI Listing

Publication Analysis

Top Keywords

pyramidal neurons
12
nmda receptors
12
properties neocortical
8
neocortical pyramidal
8
patients epilepsy
8
lower frequencies
8
nmda
6
n-methyl-d-aspartate-induced oscillatory
4
oscillatory properties
4
neurons
4

Similar Publications

Motor cortical neuronal hyperexcitability associated with α-synuclein aggregation.

NPJ Parkinsons Dis

January 2025

Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.

ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern.

View Article and Find Full Text PDF

Background: Neurological dysfunction is a common complication of traumatic brain injury (TBI), and early treatments are critical for the long-term prognosis. This study aimed to investigate whether hypidone hydrochloride (YL-0919) improves neurological function impairment in mice with TBI.

Methods: TBI was induced in adult male C57BL/6J mice using the controlled cortical impact (CCI) method.

View Article and Find Full Text PDF

The degeneration of pyramidal tracts has been reported in frontotemporal lobar degeneration with TDP-43 (TAR DNA-binding protein 43) pathology (FTLD-TDP) type C. Herein, we examined the detailed pathology of the primary motor area and pyramidal tracts in the central nervous system in four autopsy cases of FTLD-TDP type C, all of which were diagnosed by neuropathological, biochemical, and genomic analyses. Three patients showed right dominant atrophy of the frontal and temporal lobes, while the other patient showed left dominant atrophy.

View Article and Find Full Text PDF

Electroencephalographic (EEG) recordings in individuals with Fragile X Syndrome (FXS) and the mouse model of FXS ( KO) display cortical hyperexcitability at rest, as well as deficits in sensory-driven cortical network synchrony. A form of circuit hyperexcitability is observed in cortical slices of KO mice as prolonged persistent activity, or Up, states. It is unknown if the circuit mechanisms that cause prolonged Up states contribute to FXS-relevant EEG phenotypes.

View Article and Find Full Text PDF

MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats.

Adv Sci (Weinh)

January 2025

Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!