In scanned-beam proton therapy, the beam spot properties, such as the lateral and longitudinal size and the minimum achievable range, are influenced by beam optics, scattering media and drift spaces in the treatment unit. Currently available spot scanning systems offer few options for adjusting these properties. We investigated a method for adjusting the lateral and longitudinal spot size that utilizes downstream plastic pre-absorbers located near a water phantom. The spot size adjustment was characterized using Monte Carlo simulations of a modified commercial scanned-beam treatment head. Our results revealed that the pre-absorbers can be used to reduce the lateral full width at half maximum (FWHM) of dose spots in water by up to 14 mm, and to increase the longitudinal extent from about 1 mm to 5 mm at residual ranges of 4 cm and less. A large factor in manipulating the lateral spot sizes is the drift space between the pre-absorber and the water phantom. Increasing the drift space from 0 cm to 15 cm leads to an increase in the lateral FWHM from 2.15 cm to 2.87 cm, at a water-equivalent depth of 1 cm. These findings suggest that this spot adjustment method may improve the quality of spot-scanned proton treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001334PMC
http://dx.doi.org/10.1088/0031-9155/55/23/S10DOI Listing

Publication Analysis

Top Keywords

lateral longitudinal
12
longitudinal size
8
spot size
8
water phantom
8
drift space
8
spot
6
lateral
5
adjustment lateral
4
longitudinal
4
size
4

Similar Publications

Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.

Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.

View Article and Find Full Text PDF

Insects enhance aerodynamic flight control using the dynamic movement of their appendages, aiding in balance, stability, and manoeuvrability. Although biologists have observed these behaviours, the phenomena have not been expressed in a unified mathematical flight dynamics framework. For instance, relevant existing models tend to disregard either the aerodynamic or the inertial effects of the appendages of insects, such as the abdomen, based on the assumption that appendage dynamic effects dominate in comparison to aerodynamic effects, or that appendages are stationary.

View Article and Find Full Text PDF

[Modified Z-plasty of the patellar tendon for patella baja and flexion deficits].

Oper Orthop Traumatol

January 2025

Klinik für Orthopädie und Unfallchirurgie, Martin-Luther-Krankenhaus Berlin, Caspar-Theyss-Str. 27-33, 14193, Berlin, Deutschland.

Objective: Lengthening of the patellar tendon to normalize patellar height and improve knee flexion deficits.

Indications: Flexion deficits in combination with patella baja (Caton index < 0.6).

View Article and Find Full Text PDF

Introduction: T regulatory cells (Tregs) inversely correlate with disease progression in Amyotrophic Lateral Sclerosis (ALS) and fast-progressing ALS patients have been reported to exhibit dysfunctional, as well as reduced, levels of Tregs. This study aimed to evaluate the longitudinal changes in Tregs among ALS patients, considering potential clinical and biological modifiers of their percentages and concentrations. Additionally, we explored whether measures of ALS progression, such as the decline over time in the revised ALS Functional Rating Scale (ALSFRS-r) or forced vital capacity (FVC) correlated Treg levels and whether Treg phenotype varied during the course of ALS.

View Article and Find Full Text PDF

Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine.

3D Print Med

January 2025

Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.

Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!