Real-time regularized ultrasound elastography.

IEEE Trans Med Imaging

Engineering Research Center for Computer Integrated Surgery, Johns Hopkins University, Baltimore, MD 21218, USA.

Published: April 2011

This paper introduces two real-time elastography techniques based on analytic minimization (AM) of regularized cost functions. The first method (1D AM) produces axial strain and integer lateral displacement, while the second method (2D AM) produces both axial and lateral strains. The cost functions incorporate similarity of radio-frequency (RF) data intensity and displacement continuity, making both AM methods robust to small decorrelations present throughout the image. We also exploit techniques from robust statistics to make the methods resistant to large local decorrelations. We further introduce Kalman filtering for calculating the strain field from the displacement field given by the AM methods. Simulation and phantom experiments show that both methods generate strain images with high SNR, CNR and resolution. Both methods work for strains as high as 10% and run in real-time. We also present in vivo patient trials of ablation monitoring. An implementation of the 2D AM method as well as phantom and clinical RF-data can be downloaded.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2010.2091966DOI Listing

Publication Analysis

Top Keywords

cost functions
8
method produces
8
produces axial
8
methods
5
real-time regularized
4
regularized ultrasound
4
ultrasound elastography
4
elastography paper
4
paper introduces
4
introduces real-time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!