Dysregulation of Ca(2+) signaling following oxidative stress is an important pathophysiological mechanism of many chronic neurodegenerative disorders, including Alzheimer's disease, age-related macular degeneration, glaucomatous and diabetic retinopathies. However, the underlying mechanisms of disturbed intracellular Ca(2+) signaling remain largely unknown. We here describe a novel mechanism for increased intracellular Ca(2+) release following oxidative stress in a neuronal cell line. Using an experimental approach that included quantitative polymerase chain reaction, quantitative immunoblotting, microfluorimetry and the optical imaging of intracellular Ca(2+) release, we show that sub-lethal tert-butyl hydroperoxide-mediated oxidative stress result in a selective up-regulation of type-2 inositol-1,4,5,-trisphophate receptors. This oxidative stress mediated change was detected both at the transcriptional and translational level and functionally resulted in increased Ca(2+) release into the nucleoplasm from the membranes of the nuclear envelope at a given receptor-specific stimulus. Our data describe a novel source of Ca(2+) dysregulation induced by oxidative stress with potential relevance for differential subcellular Ca(2+) signaling specifically within the nucleus and the development of novel neuroprotective strategies in neurodegenerative disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038464 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2010.11.010 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.
This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.
View Article and Find Full Text PDFPLoS One
January 2025
Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom.
Pseudoexfoliation glaucoma is a severe form of secondary open angle glaucoma and is associated with activation of the TGF-β pathway by TGF-β1. MicroRNAs (miRNAs) are small non-coding RNA species that are involved in regulation of mRNA expression and translation. To investigate what glaucomatous changes occur in the trabecular meshwork and how these changes may be regulated by miRNAs, we performed a bioinformatics analysis resulting in a miRNA-mRNA interactome.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.
View Article and Find Full Text PDFRev Endocr Metab Disord
January 2025
Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.
Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!