α-Tocopherol is a lipophilic antioxidant that is an efficient scavenger of singlet oxygen. We investigated the role of α-tocopherol in the protection of photosystem II (PSII) from photoinhibition using a mutant of the cyanobacterium Synechocystis sp. PCC 6803 that is deficient in the biosynthesis of α-tocopherol. The activity of PSII in mutant cells was more sensitive to inactivation by strong light than that in wild-type cells, indicating that lack of α-tocopherol enhances the extent of photoinhibition. However, the rate of photodamage to PSII, as measured in the presence of chloramphenicol, which blocks the repair of PSII, did not differ between the two lines of cells. By contrast, the repair of PSII from photodamage was suppressed in mutant cells. Addition of α-tocopherol to cultures of mutant cells returned the extent of photoinhibition to that in wild-type cells, without any effect on photodamage. The synthesis de novo of various proteins, including the D1 protein that plays a central role in the repair of PSII, was suppressed in mutant cells under strong light. These observations suggest that α-tocopherol promotes the repair of photodamaged PSII by protecting the synthesis de novo of the proteins that are required for recovery from inhibition by singlet oxygen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2010.11.003 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.
Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.
View Article and Find Full Text PDFPharm Biol
December 2025
The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.
Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.
Molecules
January 2025
Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
Epigenetic abnormalities play a critical role in colon carcinogenesis, making them a promising target for therapeutic interventions. In this study, we demonstrated that curcumin reduces colon cancer cell survival and that a decrease in lysine methylation was involved in such an effect. This correlated with the downregulation of methyltransferases EZH2, MLL1, and G9a, in both wild-type p53 (wtp53) HCT116 cells and mutant p53 (mutp53) SW480 cells, as well as SET7/9 specifically in wtp53 HCT116 cells.
View Article and Find Full Text PDFMolecules
January 2025
Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
is a Gram-negative bacterium and human pathogen that is linked to various gastric diseases, including peptic ulcer disease, chronic gastritis, and gastric cancer. The filament of the flagellum is surrounded by a membranous sheath that is contiguous with the outer membrane. Proteomic analysis of isolated sheathed flagella from B128 identified the lipoprotein HP0135 as a potential component of the flagellar sheath.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell'Istria, 65, 34137 Trieste, Italy.
Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!