Homocitrate synthase (HCS) catalyzes the first step of l-lysine biosynthesis in fungi by condensing acetyl-coenzyme A and 2-oxoglutarate to form 3R-homocitrate and coenzyme A. Due to its conservation in pathogenic fungi, HCS has been proposed as a candidate for antifungal drug design. Here we report the development and validation of a robust fluorescent assay for HCS that is amenable to high-throughput screening for inhibitors in vitro. Using this assay, Schizosaccharomyces pombe HCS was screened against a diverse library of approximately 41,000 small molecules. Following confirmation, counter screens, and dose-response analysis, we prioritized more than 100 compounds for further in vitro and in vivo analysis. This assay can be readily adapted to screen for small molecule modulators of other acyl-CoA-dependent acyltransferases or enzymes that generate a product with a free sulfhydryl group, including histone acetyltransferases, aminoglycoside N-acetyltransferases, thioesterases, and enzymes involved in lipid metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115995PMC
http://dx.doi.org/10.1016/j.ab.2010.11.004DOI Listing

Publication Analysis

Top Keywords

homocitrate synthase
8
application high-throughput
4
high-throughput fluorescent
4
fluorescent acetyltransferase
4
assay
4
acetyltransferase assay
4
assay identify
4
identify inhibitors
4
inhibitors homocitrate
4
synthase homocitrate
4

Similar Publications

Homologation of amino acids is the insertion or deletion of a methylene group to their side chain, which is a relatively uncommon chemical transformation observed in peptide natural product (NP) structure. Homologated amino acids can potentially make the NP more stable in a biological system, but its biosynthesis is yet to be understood. This study biochemically characterized the first of three unexplored enzymes in the homologation pathway of l-phenylalanine and l-tyrosine.

View Article and Find Full Text PDF

Molecular Evolution of Lysine Biosynthesis in Agaricomycetes.

J Fungi (Basel)

December 2021

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

As an indispensable essential amino acid in the human body, lysine is extremely rich in edible mushrooms. The α-aminoadipic acid (AAA) pathway is regarded as the biosynthetic pathway of lysine in higher fungal species in Agaricomycetes. However, there is no deep understanding about the molecular evolutionary relationship between lysine biosynthesis and species in Agaricomycetes.

View Article and Find Full Text PDF

Edible mushrooms are important nutraceutical sources of foods and drugs, which can produce various nutritional ingredients including all essential amino acids. The method of rapid screening for the strains producing specific functional components is very indispensable. Homocitrate synthase is one of the key enzymes in the α-aminoadipate pathway for lysine biosynthesis and has preferable sequence conservation in Agaricales.

View Article and Find Full Text PDF

The Chloroplast of as a Testbed for Engineering Nitrogen Fixation into Plants.

Int J Mol Sci

August 2021

Algal Research Group, Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.

Eukaryotic organisms such as plants are unable to utilise nitrogen gas (N) directly as a source of this essential element and are dependent either on its biological conversion to ammonium by diazotrophic prokaryotes, or its supply as chemically synthesised nitrate fertiliser. The idea of genetically engineering crops with the capacity to fix N by introduction of the bacterial nitrogenase enzyme has long been discussed. However, the expression of an active nitrogenase must overcome several major challenges: the coordinated expression of multiple genes to assemble an enzyme complex containing several different metal cluster co-factors; the supply of sufficient ATP and reductant to the enzyme; the enzyme's sensitivity to oxygen; and the intracellular accumulation of ammonium.

View Article and Find Full Text PDF

Homocitrate synthase (HCS) catalyzes the aldol condensation of 2-oxoglutarate (2-OG) and acetyl coenzyme A (AcCoA) to form homocitrate, which is the first enzyme of the lysine biosynthetic pathway in the yeast Saccharomyces cerevisiae. The HCS activity is tightly regulated via feedback inhibition by the end product lysine. Here, we designed a feedback inhibition-insensitive HCS of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!