Diphenylthiourea (DPTU) is a known skin sensitizer commonly used as a vulcanization accelerator in the production of synthetic rubber, for example, neoprene. The versatile usage of neoprene is due to the multifaceted properties of the material; for example, it is stretchable, waterproof, and chemical- and abrasion-resistant. The wide application of neoprene has resulted in numerous case reports of dermatitis patients allergic to DPTU. The mechanism by which DPTU works as a contact allergen has not been described; thus, the aim of the present study was to investigate if DPTU is a prohapten that can be activated by skin metabolism. The metabolic activation and covalent binding of (14)C-labeled DPTU to proteins were tested using a skinlike cytochrome P450 (P450) cocktail containing the five most abundant P450s found in human skin (CYP1A1, 1B1, 2B6, 2E1, and 3A5) and human liver microsomes. The incubations were carried out in the presence or absence of the metabolite trapping agents glutathione, methoxylamine, and benzylamine. The metabolism mixtures were analyzed by LC-radiochromatography, LC-MS, and LC-MS/MS. DPTU was mainly metabolically activated to reactive sulfoxides resulting in desulfurated adducts in both enzymatic systems used. Also, phenylisothiocyanate and phenylisocyanate were found to be metabolites of DPTU. The sensitizing capacity of the substrate (DPTU) and three metabolites was tested in the murine local lymph node assay. Two out of three metabolites tested were strong skin sensitizers, whereas DPTU itself, as previously known, was negative using this mouse model. In conclusion, DPTU forms highly reactive metabolites upon bioactivation by enzymes present in the skin. These metabolites are able to induce skin sensitization and are probable causes for DPTU allergy. To increase the possibilities of diagnosing contact allergy to DPTU-containing items, we suggest that suitable metabolites of DPTU should be used for screening testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx100241z | DOI Listing |
ACS Catal
October 2022
Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Substituted diphenylthioureas (DPTUs) are efficient hydrogen-bonding organo-catalysts, and substitution of DPTUs has been shown to greatly affect catalytic activity. Yet, both the conformation of DPTUs in solution and the conformation and hydrogen-bonded motifs within catalytically active intermediates, pertinent to their mode of activation, have remained elusive. By combining linear and ultrafast vibrational spectroscopy with spectroscopic simulations and calculations, we show that different conformational states of thioureas give rise to distinctively different N-H stretching bands in the infrared spectra.
View Article and Find Full Text PDFACS Omega
October 2020
Department of Chemistry, The University of Danang-University of Science and Technology, Danang City 550000, Vietnam.
1,3-Diphenyl-2-thiourea (DPTU) and 1-phenyl-3-(2-pyridyl)-2-thiourea (PPTU) were selected as the researched subject for investigating the effect of heteroatoms on the low carbon steel corrosion inhibition ability. Results from the potentiodynamic polarization measurements (PPM) indicate that the addition of a nitrogen atom in the benzene ring increases the corrosion inhibition efficiency of PPTU (97.2%), being higher than that of DPTU (93.
View Article and Find Full Text PDFJ Food Sci
November 2020
College of Food Science and Engineering, Jilin University, Changchun, P. R. China.
This study was conducted to design an electrochemical sensor for detection of l-glutamate (L-Glu) and Aspartate (Asp), which contribute largely to the umami taste of beef. Using N, N'-diphenylthiourea (DPTU), polypyrrole (PPy), and polyvinyl chloride (PVC), a composite electrode (DPTU/PVC/PPy/Pt) was prepared for rapidly electrochemical detection of l-Glu and Asp. The surface morphology of the synthesized functionalized electrode was characterized by Field Emission Scanning Electron Microscopy (FESEM).
View Article and Find Full Text PDFPharmacol Res
September 2020
Department of Pharmacy, University of Pisa, via Bonanno, 6 - 56125, Pisa, Italy. Electronic address:
The gasotransmitter hydrogen sulfide (HS) is involved in the regulation of the vascular tone and an impairment of its endogenous production may play a role in hypertension. Thus, the administration of exogenous HS may be a possible novel and effective strategy to control blood pressure. Some natural and synthetic sulfur compounds are suitable HS-donors, exhibiting long-lasting HS release; however, novel HS-releasing agents are needed to improve the pharmacological armamentarium for the treatment of cardiovascular diseases.
View Article and Find Full Text PDFBreast Cancer Res
December 2019
Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, Suite 705, 300 E 66th Street, New York, NY, 10065, USA.
Background: Available data proving the value of DWI for breast cancer diagnosis is mainly for enhancing masses; DWI may be less sensitive and specific in non-mass enhancement (NME) lesions. The objective of this study was to assess the diagnostic accuracy of DWI using different ROI measurement approaches and ADC metrics in breast lesions presenting as NME lesions on dynamic contrast-enhanced (DCE) MRI.
Methods: In this retrospective study, 95 patients who underwent multiparametric MRI with DCE and DWI from September 2007 to July 2013 and who were diagnosed with a suspicious NME (BI-RADS 4/5) were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!