Rapid formation of superhydrophobic surfaces with fast response wettability transition.

ACS Appl Mater Interfaces

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Road 18th, Lanzhou 730000, PR China.

Published: December 2010

We have developed a facile and time-saving method to prepare superhydrophobic surfaces on copper sheets. Various surface textures composed of Cu(OH)2 nanorod arrays and CuO microflowers/Cu(OH)2 nanorod arrays hierarchical structure were prepared by a simple solution-immersion process. After chemical modification with stearic acid, the wettability of the as-prepared surfaces was changed from superhydrophilicity to superhydrophobicity. The shortest processing time for fabricating a superhydrophobic surface was 1.5 min. Interestingly, the rapid wettability transition between superhydrophobicity and superhydrophilicity can be realized on the prepared surfaces with ease by the alternation of air-plasma treatment and stearic acid coating. It took just 2 min to complete the whole wettability transition. Additionally, the regeneration of the superhydrophobic surface is also considered regarding its application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am100808vDOI Listing

Publication Analysis

Top Keywords

wettability transition
12
superhydrophobic surfaces
8
nanorod arrays
8
stearic acid
8
superhydrophobic surface
8
rapid formation
4
superhydrophobic
4
formation superhydrophobic
4
surfaces
4
surfaces fast
4

Similar Publications

The research aimed to assess the effect of polysaccharides (maltodextrin and β-cyclodextrin) on technological properties of low-lactose milk powder obtained by spray drying of β-galactosidase hydrolysed milk. Low-lactose milk powders i.e.

View Article and Find Full Text PDF

The phenomenon of solid dissolution into a solution constitutes a fundamental aspect in both natural and industrial contexts. Nevertheless, its intricate nature at the microscale poses a significant challenge for precise quantitative characterization at a foundational level. In this work, the influence across three specific cleavage planes, namely (100), (111), and (110) on the dissolution kinetics of fluorite in aqueous environments was examined from both experimental and theoretical standpoints.

View Article and Find Full Text PDF

Stable Air Plastron Prolongs Biofluid Repellency of Submerged Superhydrophobic Surfaces.

Langmuir

January 2025

School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.

Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.

View Article and Find Full Text PDF

Solar Evaporator with Dual Gradient Heating Effect for Sustained and Efficient Desalination.

Small

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.

Solar desalination shows promise in tackling freshwater shortages, but challenges arise from the trade-off between water transportation and heat supply, affecting evaporators' efficiency and salt resistance. Additionally, intermittent nature of solar radiation significantly diminishes overall evaporative performance. This study presents dual-gradient heating solar evaporator for efficient desalination.

View Article and Find Full Text PDF

Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!