IC-tagging and protein relocation to ARV muNS inclusions: a method to study protein-protein interactions in the cytoplasm or nucleus of living cells.

PLoS One

Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Spain.

Published: November 2010

Background: Characterization of protein-protein interactions is essential for understanding cellular functions. Although there are many published methods to analyze protein-protein interactions, most of them present serious limitations. In a different study we have characterized a novel avian reovirus muNS-based protein tagging and inclusion targeting method, and demonstrated its validity to purify free an immobilized protein.

Methodology/principal Findings: Here we present a method to identify protein-protein interactions inside living eukaryotic cells (tested in primate and avian cells). When p53 was tagged with Intercoil (IC; muNS residues 477-542), it not only got integrated into muNS cytoplasmic inclusions, but also attracted its known ligand SV40 large T antigen (TAg) to these structures. We have also adapted this system to work within the cell nucleus, by creating muNS-related protein chimeras that form nuclear inclusions. We show that nuclear muNS-derived inclusions are as efficient as cytoplasmic ones in capturing IC-tagged proteins, and that the proteins targeted to nuclear inclusions are able to interact with their known ligands.

Conclusions/significance: Our protein redistribution method does not present the architectural requirement of re-constructing a transcription factor as any of the two-hybrid systems do. The method is simple and requires only cell transfection and a fluorescence microscope. Our tagging method can be used either in the cytoplasm or the nucleus of living cells to test protein-protein interactions or to perform functional studies by protein ligand sequestration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2970561PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013785PLOS

Publication Analysis

Top Keywords

protein-protein interactions
20
cytoplasm nucleus
8
nucleus living
8
living cells
8
nuclear inclusions
8
method
6
inclusions
5
protein-protein
5
interactions
5
ic-tagging protein
4

Similar Publications

Aberrant promoter methylation of CTHRC1 gene and its clinicopathological characteristics in head and neck cancer.

Int J Oral Maxillofac Surg

January 2025

Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address:

Head and neck squamous cell carcinoma (HNSCC) is genetically complex and difficult to treat. Detection in the early stage is challenging, leading to diagnosis at advanced stages with limited treatment options. This study examined the collagen triple helix repeat containing 1 gene (CTHRC1) as a potential biomarker and therapeutic target in HNSCC.

View Article and Find Full Text PDF

Exploring the mechanism and drug candidates of alveolar echinococcosis affecting liver fibrosis through analysis of existing microarray data.

Acta Trop

January 2025

Department of Department of Anesthesiology, the First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, China; Xinjiang Perioperative Organ Protection Laboratory, No. 137, South Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, China. Electronic address:

Echinococcosis, a zoonotic disease, significantly impacts the liver, with alveolar echinococcosis (AE) often leading to liver fibrosis and, in severe cases, cirrhosis. However, the molecular mechanisms by which AE infection promotes liver fibrosis remain incompletely understood. This study utilized bioinformatic analysis of existing microarray data to explore the shared mechanisms between AE and liver fibrosis and to identify potential therapeutic drug candidates.

View Article and Find Full Text PDF

Recombinant Antibodies Inhibit Enzymatic Activity of the E3 Ubiquitin Ligase CHIP via Multiple Mechanisms.

J Biol Chem

January 2025

Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.

View Article and Find Full Text PDF

Specific Rosetta-based protein-peptide prediction protocol allows the design of novel cholinesterase inhibitor peptides.

Bioorg Chem

January 2025

Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina. Electronic address:

The search for novel cholinesterase inhibitors is essential for advancing treatments for neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we employed the Rosetta pepspec module, originally developed for designing peptides targeting protein-protein interactions, to design de novo peptides targeting the peripheral aromatic site (PAS) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). A total of nine peptides were designed for human AChE (hAChE), T.

View Article and Find Full Text PDF

Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!