The past three decades have seen a revolution in molecular biology and genetics that have changed the way we define disease, diagnose it, understand pathogenesis, initiate new treatments and assess individual responsiveness to intervention. The 'new genetics' has made its biggest impact on monogenic or 'rare' diseases, although its impact is increasingly being felt in the polymorphic so-called 'common' diseases. In this brief review, we summarise the efforts being made to improve the management of rare kidney diseases in Europe through the EUNEFRON network and also the rapid progress being made internationally in translating genetic knowledge for patient benefit in autosomal dominant polycystic kidney disease, the most common inherited kidney disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000320875 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Zoological Survey of India, Kolkata, 700053, India.
Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.
Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.
Risk Anal
January 2025
School of Journalism and Communication, Tsinghua University, Beijing, China.
Communication research on scientific issues has traditionally relied on the deficit model, which posits that increasing scientific knowledge leads to public acceptance. However, this model's effectiveness is questioned due to inconclusive impacts of knowledge on acceptance. To address this, we propose a dual-process framework combining the deficit model (with scientific knowledge as a key predictor) and a normative opinion process model (where perceived majority opinion plays a crucial role) to predict people's risk/benefit perceptions and their support for genetic modification (GM).
View Article and Find Full Text PDFObes Rev
January 2025
Inserm UMR 1256 Nutrition-Genetics-Environmental Risk Exposure (N-G-ERE), University of Lorraine, Nancy, France.
Limited literature addresses the association between pollution, stress, and obesity, and knowledge synthesis on the associations between these three topics has yet to be made. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases to identify studies dealing with the effects of semi-volatile organic compounds, pesticides, conservatives, and heavy metals on the psychosocial stress response and adiposity in humans, animals, and cells. The quality of papers and risk assessment were evaluated with ToxRTool, BEES-C instrument score, SYRCLE's risk of bias tool, and CAMARADES checklist.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.
Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!