We carry out a molecular dynamics study of nanobearings based on double-walled carbon nanotubes with a short rotating outer tube. A (4, 4)/(9, 9) bearing configuration shows peculiar stabilization of rotational motion at certain values of angular velocities. The observed trend is found at those values of initial angular velocities (in the current context, 0.8-1.5 rad ps(-1)) which denote a transitional regime between nearly frictionless operation at low initial angular speeds and decaying performance at high initial angular velocities. With the use of detailed 'principal components analysis', we find that the energy dissipation occurs mainly due to the excitation of wavy modes in the inner tube of the bearing. It is also proposed that wavy deformation is facilitated by the actuation of axial translation of the outer tube, which acts as an energy channelling mode. Hence, we find that the absence of dissipative wavy modes results in sustained smooth rotational dynamics of the nanobearing at low temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/21/49/495303 | DOI Listing |
Curr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
We introduce a novel, to the best of our knowledge, method to achieve a highly efficient nonreciprocal magnon laser within a spinning cavity optomagnonic system, which integrates a magnon mode and two optical modes. The rotation of the YIG sphere triggers the Barnett effect in the magnon mode and the Sagnac effect in the optical modes. The directional input of a pump light leads to opposite Sagnac-Fizeau frequency shifts in these modes.
View Article and Find Full Text PDFExp Gerontol
January 2025
Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain.
Purpose: This study aimed to explore the association and prediction of hip abduction-adduction and knee flexion-extension isokinetic absolute and relative strength and power at 60°/s and 180°/s from functional tests performance (i.e., Up-and-Go Test [seconds], 30-Second Chair Stand Test [repetitions and relative and allometric power], 30-Second Arm Curl Test [repetitions], and 6-Minute Walk Test [meters]) in older adults.
View Article and Find Full Text PDFSci Rep
January 2025
Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
To achieve rapid and stable detumbling of a space noncooperative satellite, an adaptive variable admittance control method for the manipulator is proposed and verified through simulation study and the ground experiment. The control block diagram of the proposed method is presented, and the adaptive variable admittance compliant detumbling control model is established. The proposed controller includes the fixed admittance controller in manipulator task space, the adaptive pose compensator for the grasping point on docking ring, and the damping adaptive regulator based on manipulator joint angular velocity, and the stability is proven by the Lyapunov method.
View Article and Find Full Text PDFPhysiol Meas
January 2025
Faculty of Sciences, University of Coimbra, Palacio de las Escuelas 3004-531, Coimbra, 3004-504, PORTUGAL.
Objective: The detection of arterial pulsating signals at the skin periphery with Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or gyroscope) which to date have demonstrated the best pulsating signal reconstruction.
Approach: A generative adversarial network with fully connected layers (FC-GAN) is proposed for the reconstruction of distorted PPG signals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!