In this paper, we propose a communication model of evolution and investigate its information-theoretic bounds. The process of evolution is modeled as the retransmission of information over a protein communication channel, where the transmitted message is the organism's proteome encoded in the DNA. We compute the capacity and the rate distortion functions of the protein communication system for the three domains of life: Archaea, Bacteria, and Eukaryotes. The tradeoff between the transmission rate and the distortion in noisy protein communication channels is analyzed. As expected, comparison between the optimal transmission rate and the channel capacity indicates that the biological fidelity does not reach the Shannon optimal distortion. However, the relationship between the channel capacity and rate distortion achieved for different biological domains provides tremendous insight into the dynamics of the evolutionary processes of the three domains of life. We rely on these results to provide a model of genome sequence evolution based on the two major evolutionary driving forces: mutations and unequal crossovers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2009.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!