Background: Evaluating the limits of adaptation to temperature is important given the IPCC-predicted rise in global temperatures. The rate and scope of evolutionary adaptation can be limited by low genetic diversity, gene flow, and costs associated with adaptive change. Freshwater organisms are physically confined to lakes and rivers, and must therefore deal directly with climate variation and change. In this study, we take advantage of a system characterised by low genetic variation, small population size, gene flow and between-trait trade-offs to study how such conditions affect the ability of a freshwater fish to adapt to climate change. We test for genetically-based differences in developmental traits indicating local adaptation, by conducting a common-garden experiment using embryos and larvae from replicate pairs of sympatric grayling demes that spawn and develop in natural cold and warm water, respectively. These demes have common ancestors from a colonization event 22 generations ago. Consequently, we explore if diversification may occur under severely constraining conditions.

Results: We found evidence for divergence in ontogenetic rates. The divergence pattern followed adaptation predictions as cold-deme individuals displayed higher growth rates and yolk conversion efficiency than warm-deme individuals at the same temperature. The cold-deme embryos had a higher rate of muscle mass development. Most of the growth- and development differences occurred prior to hatch. The divergence was probably not caused by genetic drift as there was a strong degree of parallelism in the divergence pattern and because phenotypic differentiation (Q(ST)) was larger than estimated genetic drift levels (microsatellite F(ST)) between demes from different temperature groups. We also document that these particular grayling populations cannot develop successfully at temperatures above 12°C, whereas other European populations can, and that increasing the muscle mass development rate comes at the cost of some skeletal trait development rates.

Conclusions: This study shows that genetically based phenotypic divergence can prevail even under conditions of low genetic variation and ongoing gene flow. Furthermore, population-specific maximum development temperatures along with musculoskeletal developmental trade-offs may constrain adaptation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994878PMC
http://dx.doi.org/10.1186/1471-2148-10-350DOI Listing

Publication Analysis

Top Keywords

low genetic
12
gene flow
12
freshwater fish
8
genetic variation
8
divergence pattern
8
muscle mass
8
mass development
8
genetic drift
8
divergence
6
adaptation
6

Similar Publications

Benign Adult-Type Osteopetrosis with Recurrent Osteomyelitis of the Maxilla-A Rare Case Report.

Indian J Dent Res

October 2024

Department of Oral Medicine and Radiology, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India.

Osteopetrosis, also known as marble bone disease, is a genetic condition characterised by generalised sclerosis of bones. The osteoclastic cells responsible for bone resorption are defective and nonfunctional. These patients tend to have low bone quality in spite of increased bone deposition and thus experience multiple fractures during their life span.

View Article and Find Full Text PDF

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Objective: To examine the evidence addressing the management of X-linked hypophosphatemia (XLH) in children to inform treatment recommendations.

Methods: We searched Embase, MEDLINE, Web of Science, and Cochrane Central up to May 2023. Eligible studies included RCTs and observational studies of individuals less than 18yrs with clinically or genetically confirmed XLH.

View Article and Find Full Text PDF

Introduction: Placental DNA methylation differences have been associated with timing in gestation and pregnancy complications. Maternal cell-free DNA (cfDNA) partly originates from the placenta and could enable the minimally invasive study of placental DNA methylation dynamics. We will for the first time longitudinally investigate cfDNA methylation during pregnancy by using Methylated DNA Sequencing (MeD-seq), which is compatible with low cfDNA levels and has an extensive genome-wide coverage.

View Article and Find Full Text PDF

Households are a significant source of SARS-CoV-2 transmission, even during periods of low community-level spread. Comparing household transmission rates by SARS-CoV-2 variant may provide relevant information about current risks and prevention strategies. This investigation aimed to estimate differences in household transmission risk comparing the SARS-CoV-2 Delta and Omicron variants using data from contact tracing and interviews conducted from November 2021 through February 2022 in five U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!