Extracellular matrix (ECM) modulates differentiation of pancreatic β-cells during development. However, the mechanism by which ECM proteins modulate differentiation is not totally clear. We investigated the effect of ECM proteins on differentiation β-cells in vitro. We investigated the effect of basement membrane ECM on differentiation of AR42J cells and rat ductal cells. First, we examined the effect of reconstituted basement membrane, Matrigel on differentiation of AR42J cells induced by activin and betacellulin. Matrigel augmented insulin production and increased the expression of GLUT2, SUR1, and glucokinase. Among various transcription factors investigated, Matrigel markedly upregulated the expression of Pax6. When Pax6 was overexpressed in cells treated with activin and betacellulin, the expression of insulin was upregulated. Conversely, knockdown of Pax6 significantly reduced the insulin expression in cells cultured on Matrigel. The effects of Matrigel on insulin-production and induction of Pax6 were reproduced partially by laminin-1, a major component of Matrigel, and inhibited by anti-integrin-β1 antibody. Matrigel also enhanced the activation of p38 mitogen-activated kinase induced by activin and betacellulin, which was inhibited by anti-β1 antibody. Finally, the effect of Matrigel on differentiation was reproduced in rat cultured ductal cells, and Matrigel also increased the expression of Pax6. These results indicate that basement membrane ECM augments differentiation of pancreatic progenitor cells to insulin-secreting cells by upregulating the expression of Pax6. .

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.22930DOI Listing

Publication Analysis

Top Keywords

differentiation ar42j
12
ar42j cells
12
basement membrane
12
activin betacellulin
12
expression pax6
12
cells
9
matrigel
9
extracellular matrix
8
insulin production
8
differentiation
8

Similar Publications

Unlabelled: Although peptide radionuclide therapy (PRRT) using a somatostatin analog (SSA) radiolabeled with a beta- emitter: [Lu]Lu-DOTATATE has shown a good clinical efficacy in neuroendocrine tumors (NETs), most of the patients only achieved tumoral stabilization and rare but severe long-term hematological toxicities have been reported. One of the promising options to improve PRRT is targeted alpha therapy. It is therefore essential to propose animal models that can mimic systemic spread disease, especially microscopic disease such as early stage of NET liver metastases to explore targeted alpha therapy.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a common digestive emergency, needs early prediction and recognition. The study examined the clinical value of long non-coding RNA SNHG1 in AP, and explored its related mechanism for AP. A total of 288 AP cases and 150 healthy persons were recruited, the AP patients were grouped based on AP severity.

View Article and Find Full Text PDF

The methylimidazolium ionic liquid M8OI (1-octyl-3-methylimidazolium chloride, also known as [C8mim]Cl) has been detected in the environment and may represent a hazard trigger for the autoimmune liver disease primary biliary cholangitis, based in part on studies using a rat liver progenitor cell. The effect of M8OI on an equivalent human liver progenitor (undifferentiated HepaRG cells; u-HepaRG) was therefore examined. u-HepaRG cells were less sensitive (>20-fold) to the toxic effects of M8OI.

View Article and Find Full Text PDF

Pancreatic lipase inhibitors can reduce blood lipids by inactivating the catalytic activity of human pancreatic lipase, a key enzyme involved in triglyceride hydrolysis, which helps control some dyslipidemic diseases. The ability of Eucommia ulmoides tea to improve fat-related diseases is closely related to the natural inhibitory components of pancreatic lipase contained in the tea. In this study, fifteen pancreatic lipase inhibitors were screened and identified from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Q-Exactive Orbitrap/MS.

View Article and Find Full Text PDF

Evaluating Autophagy Levels in Two Different Pancreatic Cell Models Using LC3 Immunofluorescence.

J Vis Exp

April 2023

Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), Universidad de Buenos Aires, CONICET;

Autophagy is a specialized catabolic process that selectively degrades cytoplasmic components, including proteins and damaged organelles. Autophagy allows cells to physiologically respond to stress stimuli and, thus, maintain cellular homeostasis. Cancer cells might modulate their autophagy levels to adapt to adverse conditions such as hypoxia, nutrient deficiency, or damage caused by chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!