Nitrogen defects from NH3 in rare-earth sesquioxides and ZrO2.

Dalton Trans

Department of Chemistry, University of Oslo, Centre for Materials Science and Nanotechnology (SMN), FERMiO, Gaustadalléen 21, NO-0349, Oslo, Norway.

Published: January 2011

Effects of nitrogen defects on the electrical properties of RE(2)O(3) (RE = Nd, Gd, Er, Y) and ZrO(2) have been investigated by equilibration in ammonia (NH(3)) atmospheres in the temperature range 1000-1200 °C. The electrical conductivity in ammonia corresponded to that in H(2)-Ar mixtures of similar pO(2). However, upon replacing ammonia with an inert gas, the conductivity increases abruptly, typically one order of magnitude, before gradually returning to its equilibrium value. A defect model based on dissolution and dissociation of effectively neutral imide defects substituting oxide ions, NH, is proposed to describe this behavior. Conductivity measurements are interpreted in terms of nitrogen acceptors which are passivated by protons in the presence of H(2)(g), and subsequently compensated by positive charge carriers in an inert atmosphere as out-diffusion of hydrogen leaves an effective acceptor, N. In the case of Y(2)O(3), a NH concentration of 0.7 mol% was estimated from quantification of the nitrogen and hydrogen contents of a sample quenched in NH(3).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0dt01068eDOI Listing

Publication Analysis

Top Keywords

nitrogen defects
8
nitrogen
4
defects nh3
4
nh3 rare-earth
4
rare-earth sesquioxides
4
sesquioxides zro2
4
zro2 effects
4
effects nitrogen
4
defects electrical
4
electrical properties
4

Similar Publications

Boosting the Hydrogen Evolution Activity of a Low-Coordinated Co─N─C Catalyst via Vacancy Defect-Mediated Alteration of the Intermediate Adsorption Configuration.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.

The cobalt-nitrogen-carbon (Co─N─C) single-atom catalysts (SACs) are promising alternatives to precious metals for catalyzing the hydrogen evolution reaction (HER) and their activity is highly dependent on the coordination environments of the metal centers. Herein, a NaHCO etching strategy is developed to introduce abundant in-plane pores within the carbon substrates that further enable the construction of low-coordinated and asymmetric Co─N sites with nearby vacancy defects in a Co─N─C catalyst. This catalyst exhibits a high HER activity with an overpotential (η) of merely 78 mV to deliver a current density of 10 mA cm, a Tafel slope of 45.

View Article and Find Full Text PDF

Highly effective adsorbents, with their impressive adsorption capacity and outstanding selectivity, play a pivotal role in technologies such as carbon capture and utilization in industrial flue gas applications, leading to significant reductions in greenhouse gas emissions. This study aims to synthesize advanced composites via solvothermal methods, incorporating a defective Zirconium-based MOF and amine-functionalized graphene oxide. The main objective is to enhance the CO adsorption capacity of the composite and improve its CO/N separation selectivity.

View Article and Find Full Text PDF

Evaluation of Plasma microRNA-222 as a Biomarker for Gastric Cancer.

J Clin Med

December 2024

Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan.

The dysregulation of microRNAs (miRNAs) has been detected in patients with gastric cancer (GC), which inspired the use of miRNAs as a novel biomarker for GC. In this study, we investigated the previously reported miRNA dysfunction in cancer tissues as a potential plasma biomarker for GC using quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The published miRNA abnormalities were searched in the microRNA Cancer Association Database.

View Article and Find Full Text PDF

Tailoring the Porous Structure of Carbon for Enhanced Oxidative Cleavage and Esterification of C(CO)-C Bonds.

ChemSusChem

December 2024

National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China.

The cleavage and functionalization of carbon-carbon bonds are crucial for the reconstruction and upgrading of organic matrices, particularly in the valorization of biomass, plastics, and fossil resources. However, the inherent kinetic inertness and thermodynamic stability of C-C σ bonds make this process challenging. Herein, we fabricated a glucose-derived defect-rich hierarchical porous carbon as a heterogeneous catalyst for the oxidative cleavage and esterification of C(CO)-C bonds.

View Article and Find Full Text PDF

Two-dimensional layered double hydroxides (LDHs) are ideal candidates for a large number of (bio)catalytic applications due to their flexible composition and easy to tailor properties. Functionality can be achieved by intercalation of amino acids (as the basic units of peptides and proteins). To gain insight on the functionality, we apply resonant inelastic soft x-ray scattering and near edge x-ray absorption fine structure spectroscopy to CaFe LDH in its pristine form as well as intercalated with the amino acids proline and cysteine to probe the electronic structure and its changes upon intercalation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!