The heating of a laser-irradiated solid aluminum particle to boiling or to temperatures that exceed boiling is analyzed theoretically and numerically by solution of the heat-transport equation. Two different criteria of particle destruction are considered. The temperature distributions inside the particles depending on the intensity values and particle sizes are presented. It is shown that at the start of heating the contribution of heat exchange plays the dominant role, but as the boiling point is approached the contribution of vaporization plays the main role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.35.000965 | DOI Listing |
Int J Biol Macromol
December 2024
Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Bacterial infection of skin wounds leads to serious health problems, including skin defects, inflammatory pain, and even death. To meet the requirements for successful treatment of complicated wounds, a multifunctional dressing is thus highly desirable. In this work, a thermosensitive hydrogel dressing (HBCA) exhibiting injectability, adaptiveness and mild photothermal antibacterial activity was developed for effective infected wound treatment.
View Article and Find Full Text PDFTomography
November 2024
KYAMOS Ltd., 37 Polyneikis Street, Strovolos, Nicosia 2047, Cyprus.
: Accurate reconstruction of internal temperature fields from surface temperature data is critical for applications such as non-invasive thermal imaging, particularly in scenarios involving small temperature gradients, like those in the human body. : In this study, we employed 3D convolutional neural networks (CNNs) to predict internal temperature fields. The network's performance was evaluated under both ideal and non-ideal conditions, incorporating noise and background temperature variations.
View Article and Find Full Text PDFMath Biosci Eng
October 2024
Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
This study presented a novel approach for the precise ablation of breast tumors using focused ultrasound (FUS), leveraging a physics-informed neural network (PINN) integrated with a realistic breast model. FUS has shown significant promise in treating breast tumors by effectively targeting and ablating cancerous tissue. This technique employs concentrated ultrasonic waves to generate intense heat, effectively destroying cancerous tissue.
View Article and Find Full Text PDFNanophotonics
August 2024
Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei 10617, Taiwan.
Raman scattering is sensitive to local temperature and thus offers a convenient tool for non-contact and non-destructive optical thermometry at the nanoscale. In turn, all-dielectric nanostructures, such as silicon particles, exhibit strongly enhanced photothermal heating due to Mie resonances, which leads to the strong modulation of elastic Rayleigh scattering intensity through subsequent thermo-optical effects. However, the influence of the complex photo-thermo-optical effect on inelastic Raman scattering has yet to be explored for resonant dielectric nanostructures.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Dipartimento di Fisica, Universitá di Roma "La Sapienza", Roma I-00185, Italy.
Because of their sub picosecond temporal resolution, coherent Raman spectroscopies have been proposed as a viable extension of spontaneous Raman thermometry, to determine dynamics of mode specific vibrational energy content during out of equilibrium molecular processes. Here we show that the presence of multiple laser fields stimulating the vibrational coherences introduces additional quantum pathways, resulting in destructive interference. This ultimately reduces the thermal sensitivity of single spectral lines, nullifying it for harmonic vibrations and temperature independent polarizability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!