Motion vision is a major function of all visual systems, yet the underlying neural mechanisms and circuits are still elusive. In the lamina, the first optic neuropile of Drosophila melanogaster, photoreceptor signals split into five parallel pathways, L1-L5. Here we examine how these pathways contribute to visual motion detection by combining genetic block and reconstitution of neural activity in different lamina cell types with whole-cell recordings from downstream motion-sensitive neurons. We find reduced responses to moving gratings if L1 or L2 is blocked; however, reconstitution of photoreceptor input to only L1 or L2 results in wild-type responses. Thus, the first experiment indicates the necessity of both pathways, whereas the second indicates sufficiency of each single pathway. This contradiction can be explained by electrical coupling between L1 and L2, allowing for activation of both pathways even when only one of them receives photoreceptor input. A fundamental difference between the L1 pathway and the L2 pathway is uncovered when blocking L1 or L2 output while presenting moving edges of positive (ON) or negative (OFF) contrast polarity: blocking L1 eliminates the response to moving ON edges, whereas blocking L2 eliminates the response to moving OFF edges. Thus, similar to the segregation of photoreceptor signals in ON and OFF bipolar cell pathways in the vertebrate retina, photoreceptor signals segregate into ON-L1 and OFF-L2 channels in the lamina of Drosophila.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature09545 | DOI Listing |
Int J Mol Sci
January 2025
Department of Developmental and Regenerative Biology, Medical Research Institute, Institute of Science Tokyo, Tokyo 113-8510, Japan.
The eye primordium of vertebrates initially forms exactly at the side of the head. Later, the eyeball architecture is tuned to see ahead with better visual acuity, but its molecular basis is unknown. The position of both eyes in the face alters in patients with holoprosencephaly due to () mutations that disturb the development of the ventral midline of the neural tube.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA.
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry.
View Article and Find Full Text PDFNeural Regen Res
December 2024
Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China.
The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Basic and Translational Science, Philadelphia, PA, 19104, United States; Department of Physiology, Philadelphia, PA, 19104, United States. Electronic address:
The P2X7 receptor (P2X7R) for extracellular ATP is implicated in several forms of retinal degeneration, including diabetic retinopathy, age-related macular degeneration, and glaucoma. P2X7R stimulation can trigger release of master cytokine IL-1β from microglia in the brain and from macrophages, but evidence of release from retinal microglia is indirect. Isolated mouse and rat retinal microglia, and wholemounts from CX3CR1 mice, were examined to determine if ATP induced IL-1β release directly from retinal microglial cells and if it also primed expression of IL-1β on an mRNA and protein level.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
Introduction: Color vision deficiency (CVD), a common visual impairment, affects individuals' ability to differentiate between various colors due to malfunctioning or absent color photoreceptors in the retina. Currently available diagnostic tests require a behavioral response, rendering them unsuitable for individuals with limited physical and communication abilities, such as those with locked-in syndrome. This study introduces a novel, non-invasive method that employs brain signals, specifically Steady-State Visually Evoked Potentials (SSVEPs), along with Ishihara plates to diagnose CVD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!