Studies suggest that there are two distinct pools of proteinase-activated receptor-2 (PAR₂) present in intestinal epithelial cells: an apical pool accessible from the lumen, and a basolateral pool accessible from the interstitial space and blood. Although introduction of PAR₂ agonists such as 2-furoyl-LIGRL-O-NH₂ (2fAP) to the intestinal lumen can activate PAR₂, the presence of accessible apical PAR₂ has not been definitively shown. Furthermore, some studies have suggested that basolateral PAR₂ responses in the intestinal epithelium are mediated indirectly by neuropeptides released from enteric nerve fibers, rather than by intestinal PAR₂ itself. Here we identified accessible pools of both apical and basolateral PAR₂ in cultured Caco2-BBe monolayers and in mouse ileum. Activation of basolateral PAR₂ transiently increased short-circuit current by activating electrogenic Cl⁻ secretion, promoted dephosphorylation of the actin filament-severing protein, cofilin, and activated the transcription factor, AP-1, whereas apical PAR₂ did not. In contrast, both pools of PAR₂ activated extracellular signal-regulated kinase 1/2 (ERK1/2) via temporally and mechanistically distinct pathways. Apical PAR₂ promoted a rapid, biphasic PLCβ/Ca²(+)/PKC-dependent ERK1/2 activation, resulting in nuclear localization, whereas basolateral PAR₂ promoted delayed ERK1/2 activation which was predominantly restricted to the cytosol, involving both PLCβ/Ca²(+) and β-arrestin-dependent pathways. These results suggest that the outcome of PAR₂ activation is dependent on the specific receptor pool that is activated, allowing for fine-tuning of the physiological responses to different agonists.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023197 | PMC |
http://dx.doi.org/10.1152/ajpcell.00162.2010 | DOI Listing |
Prog Neurobiol
December 2024
Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China. Electronic address:
In response to stressors, individuals manifest varied behavioral responses directed toward satisfying physiological survival needs. Although the enduring effects of adolescent stress on both humans and animals are well-documented, the underlying mechanisms remain insufficiently elucidated. Utilizing immunofluorescence, viral injections, and brain slice electrophysiological recordings, we have delineated that heightened excitability among glutamatergic neurons in the basolateral amygdala (BLA) is responsible for inducing heightened exploratory behaviors in adolescent mice subjected to mild, chronic restraint stress.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands.
The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.
View Article and Find Full Text PDFInflamm Bowel Dis
December 2024
Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
Background: The consumption of ultra-processed foods has increased significantly worldwide and is associated with the rise in inflammatory bowel diseases. However, any causative factors and their underlying mechanisms are yet to be identified. This study aimed to further elucidate whether different types of the dietary emulsifier carrageenan (CGN) can alter the permeability and inflammatory state of the intestinal epithelium.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
January 2025
Department of Psychiatry, New York University Grossman School of Medicine, New York, New York.
Background: An excess of exosomes, nanovesicles released from all cells and key regulators of brain plasticity, is an emerging therapeutic target for stress-related mental illnesses. The effects of chronic stress on exosome levels are unknown; even less is known about molecular drivers of exosome levels in the stress response.
Methods: We used our state-of-the-art protocol with 2 complementary strategies to isolate neuronal exosomes from plasma, ventral dentate gyrus, basolateral amygdala, and olfactory bulbs of male mice to determine the effects of chronic restraint stress (CRS) on exosome levels.
Front Cell Dev Biol
December 2024
Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan.
Polarized transport is essential for the construction of multiple plasma membrane domains within cells. photoreceptors serve as excellent model systems for studying the mechanisms of polarized transport. We conducted a comprehensive soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) screening of the fly genome using RNAi knockdown and CRISPR/Cas9 somatic knockout combined with the CoinFLP system to identify SNAREs involved in post-Golgi trafficking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!