Numerous studies have reported generation of cartilage-like tissue from chondrocytes and stem cells, using pellet cultures, bioreactors and various biomaterials, especially hydrogels. However, one of the primary unsolved challenges in the field has been the inability to produce tissue that mimics the highly organized zonal architecture of articular cartilage; specifically its spatially varying mechanical properties and extra-cellular matrix (ECM) composition. Here we show that different combinations of synthetic and natural biopolymers create unique niches that can "direct" a single marrow stem cell (MSC) population to differentiate into the superficial, transitional, or deep zones of articular cartilage. Specifically, incorporating chondroitin sulfate (CS) and matrix metalloproteinase-sensitive peptides (MMP-pep) into PEG hydrogels (PEG:CS:MMP-pep) induced high levels of collagen II and low levels of proteoglycan expression resulting in a low compressive modulus, similar to the superficial zone. PEG:CS hydrogels produced intermediate-levels of both collagen II and proteoglycans, like the transitional zone, while PEG:hyaluronic acid (HA) hydrogels induced high proteoglycan and low collagen II levels leading to high compressive modulus, similar to the deep zone. Additionally, the compressive moduli of these zone-specific matrices following cartilage generation showed similar trend as the corresponding zones of articular cartilage, with PEG:CS:MMP-pep having the lowest compressive modulus, followed by PEG:CS while PEG:HA had the highest modulus. These results underscore the potential for composite scaffold structures incorporating these biomaterial compositions such that a single stem-progenitor cell population can give rise to zonally-organized, functional articular cartilage-like tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2010.10.009 | DOI Listing |
Foot Ankle Int
January 2025
Department of Orthopaedic Surgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
Background: Autologous osteochondral transplantation (AOT) is an option to treat large osteochondral lesions of the talus (OLTs), accompanying subchondral cyst, and previous unsuccessful bone marrow stimulation (BMS) procedures. Although there is extensive literature on the outcomes of surgical interventions for medial osteochondral lesions, research focusing on lateral lesions remains limited. This article presents the intermediate-term clinical and radiologic outcomes following AOT for lateral OLTs.
View Article and Find Full Text PDFIntroduction: With the increased use of CTs in cases with trimalleolar ankle fractures, bone fragments between the posterior malleolus and the rest of the articular surface tibial plafond surface - described as intercalary fragments (ICFs) - can be recognized. The aim of this study was to determine the ICF size threshold for a significant change in the pressure distribution at the ankle joint, having a considerable impact on the remaining cartilage of the joint.
Design And Methods: Eight human cadaveric lower legs were used, and a posterior malleolus Bartonicek II fracture was created with sequential 2mm, 4mm, 6mm and 8mm ICFs.
Commun Biol
January 2025
Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
Mitochondrial homeostasis plays a crucial role in the pathogenesis of osteoarthritis (OA), a chronic musculoskeletal disorder characterized by articular cartilage degeneration and chondrocyte apoptosis. However, molecular mechanisms underlying the association between mitophagy and OA remain unclear. Here, we aimed to investigate the role of the autophagy receptor protein optineurin (OPTN) in OA, and explore the effects of dietary intervention on OA symptoms and its relationship with OPTN-mediated mitophagy.
View Article and Find Full Text PDFBone Joint Res
January 2025
Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming, China.
Aims: Magnesium ions (Mg) play an important role in promoting cartilage repair in cartilage lesions. However, no research has focused on the role of Mg combined with microfracture (MFX) in hyaline-like cartilage repair mediated by cartilage injury. This study aimed to investigate the beneficial effects of the combination of MFX and Mg in cartilage repair.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Division of Orthopedics, The third affiliated hospital of Sun Yat-sen university, Guangzhou 510530, China.
This study aimed to investigate the regulation of fibroblast phenotypes by MSCs delivering copper sulfide (CuS) nanoparticles (NPs) loaded with CDKN1A plasmids and their role in cartilage repair during osteoarthritis (OA). Single-cell RNA sequencing data from the GEO database were analyzed to identify subpopulations within the OA immune microenvironment. Quality control, filtering, PCA dimensionality reduction, and tSNE clustering were performed to obtain detailed cell subtypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!