The effects of field electrical stimulation on the contractile response of the isolated middle cerebral artery of the goat were evaluated before and after the use of experimental procedures designed to test the adrenergic component involved. Supramaximal stimuli produced frequency-dependent increases in tension. This response was significantly reduced by phentolamine (10(-6) M), tetrodotoxin (3 X 10(-6) M), and bretylium (5 X 10(-5) M), but not by cocaine (10(-6) M). Arterial segments from goats pretreated with reserpine and from goats in which both superior cervical sympathetic ganglia had been removed 12 days prior to the experiment also showed a significant decrease in the contraction elicited by electrical stimulation. The norepinephrine concentration of the arteries of the circle of Willis from control goats was 2.10 microgram per gram of tissue. Reserpine or gangliectomy reduced the catecholamine content to undetectable levels. It is likely that a major part of the contractile response of cerebral arteries to electrical stimulation is due to release of endogenous norepinephrine which in turn activates the alpha-adrenergic receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.1978.235.2.H131DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
12
middle cerebral
8
cerebral artery
8
contractile response
8
adrenergic vasoconstriction
4
vasoconstriction goat
4
goat middle
4
artery effects
4
effects field
4
field electrical
4

Similar Publications

Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

Role of transcutaneous electrical nerve stimulation in alleviation of tinnitus in normal hearing subjects.

Eur Arch Otorhinolaryngol

January 2025

Audio-vestibular Medicine unit, department of Ear, Nose and throat, Faculty of Medicine, Assiut University, Assiut, Egypt.

Background: Subjective tinnitus is characterized by perception of sound in the absence of any external or internal acoustic stimuli. Many approaches have been developed over the years to treat tinnitus (medical and nonmedical). However, no consensus has been reached on the optimal therapeutic approach.

View Article and Find Full Text PDF

Engineering a wirelessly self-powered neural scaffold based on primary battery principle to accelerate nerve cell differentiation.

Colloids Surf B Biointerfaces

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China. Electronic address:

Electrical stimulation displayed tremendous potential in promoting nerve regeneration. However, the current electrical stimulation therapy required complex traversing wires and external power sources, which significantly limited its practical application. Herein, a self-powered nerve scaffold based on primary battery principle was gradient printed by laser additive manufacturing technique.

View Article and Find Full Text PDF

Objectives: Trunk control involves multiple brain regions related to motor control systems. Therefore, patients with central nervous system (CNS) disorders frequently exhibit impaired trunk control, decreasing their activities of daily living (ADL). Although some therapeutic interventions for trunk impairments have been effective, their general effects on CNS disorders remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!