The use of nano-systems such as the microemulsions is considered as an increasingly implemented strategy in order to enhance the percutaneous transport into and across the skin barrier. The determination of the major pathway of penetration and the mechanisms by which these formulations work remains crucial. In this study, laser confocal scanning microscopy was used to visualize the penetration and the distribution of a fluorescently-labelled microemulsion (using 0.1% w/v Nile red) consisting of (%, w/w) 15.4% oleic acid, 30.8% Tween 20, 30.8% Transcutol® and 23% water. The surface images revealed that the microemulsion accumulated preferentially in the intercellular domains of the stratum corneum. Additionally, by analysis of the images taken across the whole stratum corneum (SC), the penetration was found to occur along its whole depth. The latter result was confirmed using tape stripping and the subsequent sensitive analysis using liquid chromatography mass spectroscopy. Dermatopharmacokinetic parameters were obtained for the microemulsion different components. These values proved the breakage of the microemulsion during its penetration across the stratum corneum. Moreover, the mechanisms of penetration enhancement and the micro molecular effects on the skin stratum corneum were investigated using attenuated Fourier transform infra-red spectroscopy. The results revealed the penetration of all the microemulsion components in the stratum corneum and demonstrated the microemulsion interaction with the skin barrier perturbing its architecture structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2010.10.025DOI Listing

Publication Analysis

Top Keywords

stratum corneum
24
skin stratum
8
skin barrier
8
microemulsion components
8
microemulsion
7
stratum
6
corneum
6
penetration
6
visualization dermatopharmacokinetic
4
dermatopharmacokinetic analysis
4

Similar Publications

Background: Identification of predictive biomarkers is crucial for formulating preventive interventions and halting the progression of atopic march. Although controversial, the use of accessible markers to predict or detect early onset of atopic diseases is highly desirable. Therefore, this study aimed to investigate whether corneal squamous cell carcinoma antigen-1 (SCCA1) collected from infants can predict the development of atopic dermatitis and food allergy.

View Article and Find Full Text PDF

Analysis of time-of-flight secondary ion mass spectrometry data of human skin treated with diclofenac using sparse autoencoder.

Anal Bioanal Chem

December 2024

Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino, Tokyo, 180-8633, Japan.

Methods that facilitate molecular identification and imaging are required to evaluate drug penetration into tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), which has high spatial resolution and allows 3D distribution imaging of organic materials, is suitable for this purpose. However, the complexity of ToF-SIMS data, which includes nonlinear factors, makes interpretation challenging.

View Article and Find Full Text PDF

Transdermal delivery of natural products against atopic dermatitis.

Chin J Nat Med

December 2024

Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China. Electronic address:

Atopic dermatitis (AD) is a chronic inflammatory skin condition. Natural products have gained traction in AD treatment due to their accessibility, low toxicity, and favorable pharmacological properties. However, their application is primarily constrained by poor solubility, instability, and limited permeability.

View Article and Find Full Text PDF

Purpose: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease that severely impairs patient's life quality and represents significant therapeutic challenge due to its pathophysiology arising from skin barrier dysfunction. Topical corticosteroids, the mainstay treatment for mild to moderate AD, are usually formulated into conventional dosage forms that are impeded by low drug permeation, resulting in high doses with consequent adverse effects, and also lack properties that would strengthen the skin barrier. Herein, we aimed to develop biomimetic lamellar lyotropic liquid crystals (LLCs), offering a novel alternative to conventional AD treatment.

View Article and Find Full Text PDF

Enhancing transdermal delivery of chrysomycin A for the treatment of cutaneous melanoma and MRSA infections using Skin-Penetrating Peptide-Functionalized deformable liposomes.

Int J Pharm

December 2024

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China. Electronic address:

Article Synopsis
  • Transdermal drug delivery using SPACE-modified liposomal chrysomycin A (CA@SPACE-LP) shows promise for treating skin diseases like melanoma and MRSA infections.
  • In vitro studies reveal that CA@SPACE-LP significantly enhances drug penetration into skin layers, achieving a threefold increase in intradermal drug concentration compared to free chrysomycin A.
  • In vivo results indicate that CA@SPACE-LP effectively suppresses melanoma tumor growth by about 60% and outperforms conventional treatments for MRSA, suggesting its potential for combined cancer and infection therapy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!