Many proteins cannot be directly sequenced by Edman degradation because they have a blocked N-terminal residue. A method is presented for deblocking such proteins when the N-terminal residue is N-acetylserine (which occurs frequently in eukaryotic proteins) or N-acetylthreonine. The method has been applied successfully to the determination of the N-terminal amino acid sequence of human, bovine, and rat parathymosins. Prothymosin alpha and other blocked proteins and peptides were also readily deblocked and sequenced by this procedure. It is proposed that the mechanism of the deblocking reaction involves an acid-catalyzed N----O shift of the acetyl group followed by a beta-elimination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC53601PMC
http://dx.doi.org/10.1073/pnas.87.5.1947DOI Listing

Publication Analysis

Top Keywords

blocked n-terminal
8
n-terminal amino
8
n-terminal residue
8
proteins
5
sequencing peptides
4
peptides proteins
4
proteins blocked
4
n-terminal
4
amino acids
4
acids n-acetylserine
4

Similar Publications

Cholesterol metabolism regulator SREBP2 inhibits HBV replication via suppression of HBx nuclear translocation.

Front Immunol

January 2025

Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.

The intricate link between cholesterol metabolism and host immune responses is well recognized, but the specific mechanisms by which cholesterol biosynthesis influences hepatitis B virus (HBV) replication remain unclear. In this study, we show that SREBP2, a key regulator of cholesterol metabolism, inhibits HBV replication by interacting directly with the HBx protein, thereby preventing its nuclear translocation. We also found that inhibiting the ER-to-Golgi transport of the SCAP-SREBP2 complex or blocking SREBP2 maturation significantly enhances HBV suppression.

View Article and Find Full Text PDF

Binding of Homeodomain Proteins to DNA with Hoogsteen Base Pair.

J Phys Chem B

January 2025

Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.

In DNA double helices, Hoogsteen (HG) base pairing is an alternative mode of Watson-Crick (WC) base pairing. HG bp has a different hydrogen bonding pattern than WC bp. We investigate here the binding energy of homeodomain proteins with a HG-DNA duplex, where DNA adopts a HG bp in its sequence.

View Article and Find Full Text PDF

Computational modeling of the anti-inflammatory complexes of IL37.

J Mol Graph Model

January 2025

Acibadem University, Institute of Health Sciences Department of Biostatistics and Bioinformatics, Istanbul 34752, Turkey; Acibadem University, School of Medicine Biostatistics and Medical Informatics, Istanbul 34752, Turkey. Electronic address:

Interleukin (IL) 37 is an anti-inflammatory cytokine belonging to the IL1 protein family. Owing to its pivotal role in modulating immune responses, elucidating the IL37 complex structures holds substantial therapeutic promise for various autoimmune disorders and cancers. However, none of the structures of IL37 complexes have been experimentally characterized.

View Article and Find Full Text PDF

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Structural insights into nucleocapsid protein variability: Implications for PJ34 efficacy against SARS-CoV-2.

Virology

January 2025

Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. Electronic address:

Human coronaviruses (HCoVs) include common cold viruses such as HCoV-229E, OC43, NL63 and HKU1 as well as MERS-CoV and SARS-CoV, which cause severe respiratory disease. Recently, SARS-CoV-2 caused a COVID-19 pandemic. The nucleocapsid (N) protein of coronaviruses, which is essential for RNA binding and homodimerization, has a highly conserved structure across viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!