A three-dimensional model of the reaction-diffusion processes of a neurotransmitter and its ligand receptor in a disk shaped volume is proposed which represents the transmission process of acetylcholine in the synaptic cleft in the neuromuscular junction. The behavior of the reaction-diffusion system is described by a three-dimensional diffusion equation with nonlinear reaction terms due to the rate processes of acetylcholine with the receptor. A new stable and accurate numerical method is used to solve the equations with Neumann boundaries in cylindrical coordinates. The simulation analysis agrees with experimental measurements of end-plate current, and agrees well with the results of the conformational state of the acetylcholine receptor as a function of time and acetylcholine concentration of earlier investigations with a smaller error compared to experiments. Asymmetric emission of acetylcholine in the synaptic cleft and the subsequent effects on open receptor population is simulated. Sensitivity of the open receptor dynamics to the changes in the diffusion parameters and neuromuscular junction volume is investigated. The effects of anisotropic diffusion and non-symmetric emission of transmitter at the presynaptic membrane is simulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10827-010-0289-5 | DOI Listing |
Front Aging Neurosci
January 2025
Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
Background: Previous studies have suggested that neuromuscular junction (NMJ) denervation plays a critical role in amyotrophic lateral sclerosis (ALS). Repetitive nerve stimulation (RNS) has been used as a technique to test neuromuscular transmission, but the sensitivity and stability of its parameters have not been investigated in patients with ALS. In addition, the impact of impaired homeostasis on NMJ stability in patients with ALS remains unclear.
View Article and Find Full Text PDFJ Psychiatr Pract
January 2025
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands.
Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune neuromuscular junction disorder characterized by proximal weakness, autonomic dysfunction, and areflexia associated with antibodies against voltage-gated calcium channels (VGCCs). Psychotic symptoms can occur in many autoimmune neurological disorders but they have rarely been observed in myasthenic syndromes. We report the case of a 21-year-old woman with primary autoimmune LEMS due to anti-VGCC antibodies subtype P/Q, who developed psychotic symptoms 3 years after the onset of motor symptoms.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Laboratório de Neurodegeneração e Reparo - Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil.
Background: Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair.
View Article and Find Full Text PDFBMC Anesthesiol
January 2025
Department of Scienze Dell'Emergenza, Anestesiologiche e Della Rianimazione, IRCCS Fondazione Policlinico A. Gemelli, Rome, Italy.
Background: Improvements in diagnostics and clinical care have allowed more women of childbearing age, suffering from neurological diseases, to safely have pregnancy, reducing peripartum complications. However, these patients remain at risk and are a constant challenge for anesthesiologists in the delivery room.
Methods: To assess the type of anesthesiologic management performed for delivery in obstetric patients with preexisting neurological disease and who reported significant neurological symptoms during pregnancy, a retrospective observational study was carried out between 1 October 2008 and 30 September 2021.
PLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!