Targeted multi-pinhole SPECT.

Eur J Nucl Med Mol Imaging

Image Sciences Institute, University Medical Centre Utrecht, Utrecht, The Netherlands.

Published: March 2011

AI Article Synopsis

  • The study focuses on enhancing small-animal SPECT imaging by improving targeted imaging of specific organs and tumors using a 75 pinhole SPECT system, allowing for more efficient photon collection from selected volumes.
  • Researchers utilized an automated stage and integrated webcams to identify and scan desired areas, demonstrating the effectiveness of improved targeting for better image quality.
  • Results showed that targeted scans significantly increased count yield, enhanced visibility of small structures, improved contrast in myocardial imaging, and reduced noise in tumor and heart images, ultimately helping to reduce scan times.

Article Abstract

Purpose: Small-animal single photon emission computed tomography (SPECT) with focused multi-pinhole collimation geometries allows scanning modes in which large amounts of photons can be collected from specific volumes of interest. Here we present new tools that improve targeted imaging of specific organs and tumours, and validate the effects of improved targeting of the pinhole focus.

Methods: A SPECT system with 75 pinholes and stationary detectors was used (U-SPECT-II). An XYZ stage automatically translates the animal bed with a specific sequence in order to scan a selected volume of interest. Prior to stepping the animal through the collimator, integrated webcams acquire images of the animal. Using sliders, the user designates the desired volume to be scanned (e.g. a xenograft or specific organ) on these optical images. Optionally projections of an atlas are overlaid semiautomatically to locate specific organs. In order to assess the effects of more targeted imaging, scans of a resolution phantom and a mouse myocardial phantom, as well as in vivo mouse cardiac and tumour scans, were acquired with increased levels of targeting. Differences were evaluated in terms of count yield, hot rod visibility and contrast-to-noise ratio.

Results: By restricting focused SPECT scans to a 1.13-ml resolution phantom, count yield was increased by a factor 3.6, and visibility of small structures was significantly enhanced. At equal noise levels, the small-lesion contrast measured in the myocardial phantom was increased by 42%. Noise in in vivo images of a tumour and the mouse heart was significantly reduced.

Conclusion: Targeted pinhole SPECT improves images and can be used to shorten scan times. Scan planning with optical cameras provides an effective tool to exploit this principle without the necessity for additional X-ray CT imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3034876PMC
http://dx.doi.org/10.1007/s00259-010-1637-4DOI Listing

Publication Analysis

Top Keywords

targeted imaging
8
specific organs
8
resolution phantom
8
myocardial phantom
8
count yield
8
spect
5
specific
5
targeted
4
targeted multi-pinhole
4
multi-pinhole spect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!