Aim: Humoral sensitization affects transplant outcome, and it is now apparent that human leukocyte antigen (HLA) antibodies are specific for epitopes rather than antigens. Such epitopes can be structurally defined by HLAMatchmaker, an algorithm that considers eplets as critical elements of epitopes recognized by alloantibodies. This study addressed the question how mismatched HLA antigens induce specific antibodies in context with eplet differences with the antibody producer.
Methods: HLA class I-specific human monoclonal antibodies derived from women sensitized during pregnancy were tested in Luminex assays with single allele panels. Their epitope specificity was determined from reactivity patterns and eplet differences between immunizing antigen and the antibody producer.
Results: This study focuses on the reactivity patterns of 10 monoclonal antibodies specific for epitopes defined by a mismatched eplet paired with a self-eplet shared between immunizing HLA antigens and HLA antigens of the antibody producer. The eplets in these pairs are between 7 and 16 Å apart, a sufficient distance for contact by two separate complementarity-determining regions of antibody.
Conclusions: These findings demonstrate that immunizing antigens have mismatched eplets that can form antibody-reactive epitopes with self-configurations on the molecular surface. They seem to suggest that HLA antibodies can be produced by autoreactive B cells that have undergone receptor editing to accommodate the recognition of nonself-eplets, the driving force of the humoral alloresponse. This concept enhances our understanding of structural epitope immunogenicity and the interpretation of antibody reactivity patterns with HLA panels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/TP.0b013e3182007b74 | DOI Listing |
Clin Epigenetics
January 2025
School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.
View Article and Find Full Text PDFNat Commun
January 2025
Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.
Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but the effect of IFN-α on the antigen repertoire of HLA Class I (HLA-I) in pancreatic β-cells is unknown. Here we characterize the HLA-I antigen presentation in resting and IFN-α-exposed β-cells and find that IFN-α increases HLA-I expression and expands peptide repertoire to those derived from alternative mRNA splicing, protein cis-splicing and post-translational modifications. While the resting β-cell immunopeptidome is dominated by HLA-A-restricted peptides, IFN-α largely favors HLA-B and only marginally upregulates HLA-A, translating into increased HLA-B-restricted peptide presentation and activation of HLA-B-restricted CD8 T cells.
View Article and Find Full Text PDFHLA
January 2025
HLA and Histocompatibility Laboratory, CHRU de Nancy, Vandœuvre-lès-Nancy, France.
The novel allele HLA-DPB1*1617:01 differs from HLA-DPB1*05:01:01:01 by one non-synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFHLA
January 2025
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Medical University, Moscow, Russia.
The new HLA-B*52:130 allele showed one nonsynonymous nucleotide difference compared to the HLA-B*52:01:01:01 allele in codon 170.
View Article and Find Full Text PDFHLA
January 2025
HLA and Histocompatibility Laboratory, CHRU de Nancy, Vandœuvre-lès-Nancy, France.
The novel allele HLA-HLA-B*40:02:39 differs from HLA-B*40:02:01:01 by one synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!