Neutral glycosphingolipids containing one to six sugars in their oligosaccharide chains have been isolated from cysts of the brine shrimp Artemia franciscana. The structures of these glycolipids were identified by methylation analysis, partial acid hydrolysis, gas-liquid chromatography, combined gas-liquid chromatography-mass spectrometry, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and proton nuclear magnetic resonance spectroscopy to be Glcβ1-Cer, Manβ1-4Glcβ1-Cer, Fucα1-3Manβ1-4Glcβ1-Cer, GlcNAcβ1-3Manβ1-4Glcβ1-Cer, GlcNAcα1-2Fucα1-3Manβ1-4Glcβ1-Cer, GalNAcβ1-4GlcNAcβ1-3Manβ1-4Glcβ1-Cer, GalNAcβ1-4(Fucα1-3)GlcNAcβ1-3Manβ1-4Glcβ1-Cer (CPS), and GalNAcβ1-4(GlcNAcα1-2Fucα1-3)GlcNAcβ1-3Manβ1-4Glcβ1-Cer (CHS). Two glycosphingolipids, CPS and CHS, were characterized as novel structures. Because Artemia contains a certain series of glycosphingolipids (-Fucα3Manβ4GlcβCer), which differ from the core sugar sequences reported thus far, we tentatively designated the glycosphingolipids characterized as nonarthro-series ones. Furthermore, CHS exhibited a hybrid structure of arthro-series and nonarthro-series sugar chain. Two novel glycosphingolipids were characterized from the brine shrimp Artemia franciscana; one was composed of arthrotetraose and a branching fucose attached to N-acetylglucosamine residue, and the other was composed of CPS with an additional N-acetylglucosamine residue attached to the branching fucose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023551 | PMC |
http://dx.doi.org/10.1194/jlr.M010173 | DOI Listing |
Sci Rep
January 2025
Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
With the advancement of biotechnology in the marine industry, an increasing utilization of marine ingredients in skincare products has been observed in recent years. Encapsulating Artemia franciscana extract and its derivatives in a novel phospholipid vesicle called hyalurosome presents innovative strategies for drug delivery systems and anti-aging products. In this study, we developed nano hyalurosomes containing Artemia franciscana active components.
View Article and Find Full Text PDFArch Microbiol
January 2025
Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, 5 Yushan Road, 266003, Qingdao, P. R. China.
Brine shrimp nauplii are widely used as live food in fish and shellfish aquaculture but they may transmit pathogenic Vibrio to the target species causing significant economic loss. Heavy usage of antibiotics is expensive and environmentally damaging. Use of natural microbes as probiotics for disease management is a more sustainable strategy.
View Article and Find Full Text PDFSci Rep
January 2025
Animal Ecology and Biodiversity Laboratory (LEBA), Universidad Nacional Federico Villarreal, 15007, Lima, Peru.
Multi-species tests in bioassays offer a holistic view of the ecosystem's response to toxicity, as different species display varying sensitivities to pollutants. This research aimed to assess the ability of toxicity tests' to distinguish contamination levels, examine site-specific effects, and investigate seasonal variability. Using a multispecies approach (Nannochloropsis oceanica, Artemia franciscana, and Arbacia nigra), bioassays evaluated marine water quality from Callao Bay in Peru across four sampling areas (Naval School: PA1, Peruvian Marine Institute: PA2, Callao Pier: PA3, and San Lorenzo Island: PA4).
View Article and Find Full Text PDFMicroorganisms
December 2024
School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.
(Gaertn) Roxb. and Retz. are significant botanicals in ancient Ayurvedic medicine.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Aquatic Environmental Biotechnology (AEB) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, 700120, India.
Ecytonucleospora hepatopenaei (EHP), a microsporidian parasite first named and characterized from the Penaeus monodon (black or giant tiger shrimp), causes growth retardation and poses a significant threat to shrimp farming. We observed shrimp farms associated with disease conditions during our fish disease surveillance and health management program in West Bengal, India. Shrimp exhibited growth retardation and increased size variability, particularly in advanced stages, exhibiting soft shells, lethargy, reduced feeding and empty midguts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!