Glial cell line-derived neurotrophic factor (GDNF) protects dopamine (DA) neurons from 6-hydroxydopamine (6-OHDA) toxicity. We have now explored this protection over 8 weeks following toxin administration. Infusion of Fluoro-Gold (FG) into the striatum was followed 1 week later by GDNF (9μg) or its vehicle. Six hours later, animals received 6-OHDA (4 μg) into the same site. 6-OHDA caused a loss of cells in the substantia nigra that expressed both FG and tyrosine hydroxylase (TH) and striatal terminals expressing TH, the high affinity dopamine transporter (DAT), and the vesicular monoamine transporter 2 (VMAT2) as assessed 2-8 weeks later. Loss of FG(+) cells, and striatal DA was completely blocked by GDNF by 2 weeks. In contrast, GDNF only slightly attenuated the loss of TH, DAT, or VMAT2 in the striatum at 2 weeks, but had restored these markers by 4-8 weeks. Thus, GDNF prevents DA cell death and loss of striatal DA content, but several weeks are required to fully restore the dopaminergic phenotype. These results provide insight into the mechanism of GDNF protection of DA neurons, and may help avoid incorrect interpretations of temporary phenotypic changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019295PMC
http://dx.doi.org/10.1016/j.brainres.2010.11.006DOI Listing

Publication Analysis

Top Keywords

dopamine neurons
8
neurons 6-hydroxydopamine
8
gdnf
7
weeks
6
effects intrastriatal
4
intrastriatal gdnf
4
gdnf response
4
response dopamine
4
6-hydroxydopamine time
4
time course
4

Similar Publications

Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration.

View Article and Find Full Text PDF

Evolutionary origins of synchronization for integrating information in neurons.

Front Cell Neurosci

January 2025

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.

View Article and Find Full Text PDF

Mu opioid receptors expressed in striatal D2 medium spiny neurons have divergent contributions to cocaine and morphine reward.

Neuroscience

January 2025

Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Waggoner Center for Alcohol & Addiction Research, The University of Texas at Austin, Austin, TX, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA. Electronic address:

While our understanding of the neurobiological mechanisms underlying cocaine and opiate reward has historically been dopamine-focused, evidence from genetic and pharmacological approaches indicates that µ-opioid receptors (MORs) in the striatum are important contributors. Within the striatum, MORs are expressed in both dopamine D1-receptor and D2-receptor expressing GABAergic medium spiny neurons (MSNs), as well as in interneurons and various afferents. Thus, it remains unclear how these distinct MOR populations regulate drug reward.

View Article and Find Full Text PDF

Cortical beta oscillation in brain slices of hemi parkinsonian mice.

Neurosci Lett

January 2025

División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico. Electronic address:

Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to significant motor and non-motor symptoms. Beta oscillations in cortical areas are a pathognomonic sign. Here we ask whether these oscillations can be recorded in in vitro cortical tissue despite severing the cortico-basal ganglia-thalamo-cortical loop.

View Article and Find Full Text PDF

Microglia-derived exosomal ciRS-7 mediates IL-17A effect of promoting neurodegeneration via miR-7 and SNCA targets in an experimental Parkinson's disease.

Int Immunopharmacol

January 2025

Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001 China. Electronic address:

Parkinson' s disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra (SN). Our research has demonstrated that the levels of interleukin (IL)-17A are elevated in the SN of rodent models of PD, and that IL-17A accelerates neurodegeneration in PD depending on microglial activation. Furthermore, existing studies indicate that exosomes released by activated microglia may play a significant role as mediators of neurodegeneration in PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!