Myocardial infarction continues to be a leading cause of mortality world-wide. Novel therapies are needed to treat the myocardial ischemia. This study was undertaken to evaluate the cardioprotective role of hesperidin on isoproterenol-induced myocardial ischemia in rats. Myocardial ischemia was induced by subcutaneous injection of isoproterenol hydrochloride (85 mg/kg body weight), for two consecutive days. Isoproterenol-administered rats showed elevated levels of cardiac markers (aspartate transaminase, alanine transaminase, lactate dehydrogenase, creatine kinase, creatine kinase-MB, cardiac troponins T and I) when compared with control and hesperidin treatment groups (100, 200 and 400 mg/kg body weight). The serum levels of cardiac markers were significantly reduced at the doses of 200 mg and 400 mg. All further experiments were carried out at the 200 mg dose. Lipid peroxidation markers (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes) were elevated significantly in the plasma and heart whereas non-enzymic antioxidants (vitamin C, vitamin E and reduced glutathione) were decreased significantly. Activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase declined significantly in the heart of ischemic rats. However, after hesperidin treatment, all the above parameters reverted to normal levels. This study demonstrated that the cardioprotective effect of hesperidin on ischemic rats could be due to its anti-lipid peroxidative and antioxidant properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067333 | PMC |
http://dx.doi.org/10.1179/135100010X12826446921509 | DOI Listing |
CNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Neurology, School of Medicine, Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
Introduction: Cerebral ischemic strokes cause brain damage, primarily through inflammatory factors. One of the regions most affected by middle cerebral artery occlusion (MCAO) is the hippocampus, specifically the CA1 area, which is highly susceptible to ischemia. Previous studies have demonstrated the anti-inflammatory properties of quercetin.
View Article and Find Full Text PDFJ Artif Organs
January 2025
Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.
Using autologous orthotopic liver transplantation (AOLT) model in rats, the effect of lipid reactive oxygen species (L-ROS) inhibitor Ferrostain-1 on ferroptosis signal pathway was observed to determine whether ferroptosis occurred in rat liver injury after cold ischemia-reperfusion (I/R). Thirty-two healthy adult SPF male SD rats, 8 ~ 10 weeks old, weight 240 ~ 260 g, were divided into four groups by the method of random number table (n = 8): sham group, I/R group, I/R + Fer-1 group, I/R + DFO group. In the I/R + Fer-1 group, ferristatin-1(5 mg /kg) was intraperitoneally injected 30 min before surgery; in the I/R + DFO group, DFO 100 mg/kg was injected intraperitoneally 1 h before operation and 12 h after operation.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2025
Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Background: Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Physiological Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; National Institute of Biostructures and Biosystems, Viale Medaglie d'Oro, 305 Roma, Italy. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!