The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells.

BMC Microbiol

Molecular Bacteriology and Immunology Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.

Published: November 2010

Background: Glyceraldehyde 3-phosphate dehydrogenases (GAPDHs) are cytoplasmic glycolytic enzymes, which although lacking identifiable secretion signals, have also been found localized to the surface of several bacteria (and some eukaryotic organisms); where in some cases they have been shown to contribute to the colonization and invasion of host tissues. Neisseria meningitidis is an obligate human nasopharyngeal commensal which can cause life-threatening infections including septicaemia and meningitis. N. meningitidis has two genes, gapA-1 and gapA-2, encoding GAPDH enzymes. GapA-1 has previously been shown to be up-regulated on bacterial contact with host epithelial cells and is accessible to antibodies on the surface of capsule-permeabilized meningococcal cells. The aims of this study were: 1) to determine whether GapA-1 was expressed across different strains of N. meningitidis; 2) to determine whether GapA-1 surface accessibility to antibodies was dependent on the presence of capsule; 3) to determine whether GapA-1 can influence the interaction of meningococci and host cells, particularly in the key stages of adhesion and invasion.

Results: In this study, expression of GapA-1 was shown to be well conserved across diverse isolates of Neisseria species. Flow cytometry confirmed that GapA-1 could be detected on the cell surface, but only in a siaD-knockout (capsule-deficient) background, suggesting that GapA-1 is inaccessible to antibody in in vitro-grown encapsulated meningococci. The role of GapA-1 in meningococcal pathogenesis was addressed by mutational analysis and functional complementation. Loss of GapA-1 did not affect the growth of the bacterium in vitro. However, a GapA-1 deficient mutant showed a significant reduction in adhesion to human epithelial and endothelial cells compared to the wild-type and complemented mutant. A similar reduction in adhesion levels was also apparent between a siaD-deficient meningococcal strain and an isogenic siaD gapA-1 double mutant.

Conclusions: Our data demonstrates that meningococcal GapA-1 is a constitutively-expressed, highly-conserved surface-exposed protein which is antibody-accessible only in the absence of capsule. Mutation of GapA-1 does not affect the in vitro growth rate of N. meningitidis, but significantly affects the ability of the organism to adhere to human epithelial and endothelial cells in a capsule-independent process suggesting a role in the pathogenesis of meningococcal infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994834PMC
http://dx.doi.org/10.1186/1471-2180-10-280DOI Listing

Publication Analysis

Top Keywords

gapa-1
15
determine gapa-1
12
glyceraldehyde 3-phosphate
8
neisseria meningitidis
8
gapa-1 affect
8
mutant reduction
8
reduction adhesion
8
human epithelial
8
epithelial endothelial
8
endothelial cells
8

Similar Publications

Synergic regulation of redox potential and oxygen uptake to enhance production of coenzyme Q in Rhodobacter sphaeroides.

Enzyme Microb Technol

June 2017

Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China. Electronic address:

The physiological role of Coenzyme Q (CoQ) as an electron carrier suggests its association with redox potential. Overexpression of glyceraldehyde-3-phosphate dehydrogenase type I (gapA-1) in Rhodobacter sphaeroides elevated the NADH/NAD ratio and meanwhile enhanced the CoQ content by 58%, but at the sacrifice of biomass. On the other hand, Vitreoscilla hemoglobin was heterologously expressed to enhance the oxygen uptake ability of the cells, leading to 127% improvement of biomass.

View Article and Find Full Text PDF

Background: Glyceraldehyde 3-phosphate dehydrogenases (GAPDHs) are cytoplasmic glycolytic enzymes, which although lacking identifiable secretion signals, have also been found localized to the surface of several bacteria (and some eukaryotic organisms); where in some cases they have been shown to contribute to the colonization and invasion of host tissues. Neisseria meningitidis is an obligate human nasopharyngeal commensal which can cause life-threatening infections including septicaemia and meningitis. N.

View Article and Find Full Text PDF

The chloroplast protein CP12 has been shown to regulate the activity of two Calvin cycle enzymes, phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), by the reversible formation of a multiprotein complex. In Arabidopsis there are three CP12 genes, CP12-1, CP12-2, and CP12-3, and expression analysis suggested that the function of these proteins may not be restricted to the Calvin cycle. Reverse transcription-PCR analysis was used here to investigate further the expression patterns of the three CP12 Arabidopsis genes together with the genes encoding plastid GAPDH (GAPA-1 and GAPB), PRK (PRK), and plastid NAD-dependent GAPDH (GAPCp1 and GAPCp2) during development, in response to changes in light, temperature, and anaerobic conditions.

View Article and Find Full Text PDF

Photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) interact in the chloroplast stroma through the action of the small peptide CP12. This supramolecular complex concurs with the light-dependent modulation in vivo of GAPDH and PRK activities. The expression patterns of several genes potentially involved in the formation of the complex have been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!