AI Article Synopsis

  • The study identifies a protein called ArfA, essential for E. coli growth when the usual ribosome rescue factor, SsrA, is absent, suggesting a backup system for bacterial translation.* -
  • The synthetic lethality between ssrA and arfA can be mitigated by an SsrA variant that tags proteins differently, emphasizing the need for ongoing translation rather than protein breakdown.* -
  • ArfA is capable of rescuing stalled ribosomes on non-stop mRNA by directly interacting with the ribosome, offering an alternative pathway for ribosome recovery independent of SsrA’s usual trans-translation process.*

Article Abstract

Although SsrA(tmRNA)-mediated trans-translation is thought to maintain the translation capacity of bacterial cells by rescuing ribosomes stalled on messenger RNA lacking an in-frame stop codon, single disruption of ssrA does not crucially hamper growth of Escherichia coli. Here, we identified YhdL (renamed ArfA for alternative ribosome-rescue factor) as a factor essential for the viability of E. coli in the absence of SsrA. The ssrA-arfA synthetic lethality was alleviated by SsrA(DD) , an SsrA variant that adds a proteolysis-refractory tag through trans-translation, indicating that ArfA-deficient cells require continued translation, rather than subsequent proteolysis of the truncated polypeptide. In accordance with this notion, depletion of SsrA in the ΔarfA background led to reduced translation of a model protein without affecting transcription, and puromycin, a codon-independent mimic of aminoacyl-tRNA, rescued the bacterial growth under such conditions. That ArfA takes over the role of SsrA was suggested by the observation that its overexpression enabled detection of the polypeptide encoded by a model non-stop mRNA, which was otherwise SsrA-tagged and degraded. In vitro, purified ArfA acted on a ribosome-nascent chain complex to resolve the peptidyl-tRNA. These results indicate that ArfA rescues the ribosome stalled at the 3' end of a non-stop mRNA without involving trans-translation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2010.07375.xDOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
non-stop mrna
8
arfa
5
ssra
5
ribosome rescue
4
rescue escherichia
4
coli arfa
4
arfa yhdl
4
yhdl absence
4
trans-translation
4

Similar Publications

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.

View Article and Find Full Text PDF

Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae.

Polymers (Basel)

January 2025

Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.

Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.

View Article and Find Full Text PDF

As the demand for sustainable and innovative solutions in food packaging continues to grow, this study endeavors to introduce a comprehensive exploration of novel active materials. Specifically, we focus on characterizing polylactide-poly(ethylene glycol) (PLA/PEG) films filled with olive leaf extract (OLE; ) obtained via solvent evaporation. Examined properties include surface structure, thermal degradation and mechanical attributes, as well as antibacterial activity.

View Article and Find Full Text PDF

Calcium Phosphate (CaP) Composite Nanostructures on Polycaprolactone (PCL): Synergistic Effects on Antibacterial Activity and Osteoblast Behavior.

Polymers (Basel)

January 2025

Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.

Bone tissue engineering aims to develop biomaterials that are capable of effectively repairing and regenerating damaged bone tissue. Among the various polymers used in this field, polycaprolactone (PCL) is one of the most widely utilized. As a biocompatible polymer, PCL is easy to fabricate, cost-effective, and offers consistent quality control, making it a popular choice for biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!