The inversion polymorphisms of the cactophilic Drosophila buzzatti Patterson and Wheeler (Diptera: Drosophilidae) were studied in new areas of its distribution in Argentina. A total of thirty-eight natural populations, including 29 from previous studies, were analyzed using multiple regression analyses. The results showed that about 23% of total variation was accounted for by a multiple regression model in which only altitude contributed significantly to population variation, despite the fact that latitude and longitude were also included in the model. Also, inversion frequencies exhibited significant associations with mean annual temperature, precipitation, and atmospheric pressure. In addition, expected heterozygosity exhibited a negative association with temperature and precipitation and a positive association with atmospheric pressure. The close similarity of the patterns detected in this larger dataset to previous reports is an indication of the stability of the clines. Also, the concurrence of the clines detected in Argentina with those reported for colonizing populations of Australia suggests the involvement of natural selection as the main mechanism shaping inversion frequencies in D. buzzatii.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3016981 | PMC |
http://dx.doi.org/10.1673/031.010.14141 | DOI Listing |
Chromosoma
December 2024
Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
Satellite DNAs are highly repetitive, tandemly arranged sequences, typically making up large portions (> 20%) of the eukaryotic genome. Most satDNAs are fast evolving and changes in their abundance and nucleotide composition may be related to genetic incompatibilities between species. Here, we used Illumina paired-end sequencing raw data and graph-based read-clustering with the TAREAN bioinformatic tool to study the satDNAs in two cactophilic neotropical cryptic species of Drosophila from the buzzatii cluster (repleta group), D.
View Article and Find Full Text PDFJ Evol Biol
November 2024
Department of Biology, University of Central Arkansas, Conway, Arkansas, USA.
Complex eukaryotes vary greatly in the mode and extent that their evolutionary histories have been shaped by the microbial communities that they host. A general understanding of the evolutionary consequences of host-microbe symbioses requires that we understand the relative importance of host phylogenetic divergence and other ecological processes in shaping variation in host-associated microbial communities. To contribute to this understanding, we described the bacterial communities hosted by several Drosophila species native to the Sonoran Desert of North America.
View Article and Find Full Text PDFCurr Biol
October 2024
Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:
Maintaining stable gaze while tracking moving objects is commonplace across animal taxa, yet how diverse ecological needs impact these processes is poorly understood. During flight, the fruit-eating fly Drosophila melanogaster maintains course by making smooth steering adjustments to fixate the image of the distant visual background on the retina, while executing body saccades to investigate nearby objects such as food sources. Cactophilic Drosophila mojavensis live where there is no canopy; rather, the flora forming visual "background" and "objects" are one and the same.
View Article and Find Full Text PDFGenome Biol Evol
September 2024
Department of Entomology, University of Arizona, Tucson, AZ, USA.
A thorough understanding of adaptation and speciation requires model organisms with both a history of ecological and phenotypic study as well as a complete set of genomic resources. In particular, high-quality genome assemblies of ecological model organisms are needed to assess the evolution of genome structure and its role in adaptation and speciation. Here, we generate new genomes of cactophilic Drosophila, a crucial model clade for understanding speciation and ecological adaptation in xeric environments.
View Article and Find Full Text PDFEcology
October 2024
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
Most organisms are at risk of being consumed by a predator or getting infected by a parasite at some point in their life. Theoretical constructs such as the landscape of fear (perception of risk) and nonconsumptive effects (NCEs, costly responses sans predation or infection) have been proposed to describe and quantify antipredator and antiparasite responses. How prey/host species identify and respond to these risks determines their survival, reproductive success and, ultimately, fitness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!