In a minimalist design approach, a synthetic peptide MSI-367 [(KFAKKFA)(3)-NH(2)] was designed and synthesized with the objective of generating cell-selective nonlytic peptides, which have a significant bearing on cell targeting. The peptide exhibited potent activity against both bacteria and fungi, but no toxicity to human cells at micromolar concentrations. Bacterial versus human cell membrane selectivity of the peptide was determined via membrane permeabilization assays. Circular dichroism investigations revealed the intrinsic helix propensity of the peptide, β-turn structure in aqueous buffer and extended and turn conformations upon binding to lipid vesicles. Differential scanning calorimetry experiments with 1,2-dipalmitoleoyl-sn-glycero-3-phosphatidylethanolamine bilayers indicated the induction of positive curvature strain and repression of the fluid lamellar to inverted hexagonal phase transition by MSI-367. Results of isothermal titration calorimetry (ITC) experiments suggested the possibility of formation of specific lipid-peptide complexes leading to aggregation. (2)H nuclear magnetic resonance (NMR) of deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) multilamellar vesicles confirmed the limited effect of the membrane-embedded peptide at the lipid-water interface. (31)P NMR data indicated changes in the lipid headgroup orientation of POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine lipid bilayers upon peptide binding. Membrane-embedded and membrane-inserted states of the peptide were observed via sum frequency generation vibrational spectroscopy. Circular dichroism, ITC, and (31)P NMR data for Escherichia coli lipids agree with the hypothesis that strong electrostatic lipid-peptide interactions embrace the peptide at the lipid-water interface and provide the basis for bacterial cell selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006059 | PMC |
http://dx.doi.org/10.1021/bi101394r | DOI Listing |
J Mater Chem B
November 2024
Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
Antimicrobial-resistant bacteria pose a significant threat to humans, prompting extensive research into developing new antimicrobial peptides (AMPs). The biomembrane is the first barrier of a biological cell, hence, comprehending the interaction and self-assembly of AMPs in and around such membranes is of great importance. In the present study, several biophysical techniques have been applied to explore the self-assembly of ubiquicidin (29-41), an archetypical AMP, in and around the phospholipid monolayers formed at air-water interface.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
June 2024
NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China.
Purpose: Neuropilin-1 (NRP-1) is a multifunctional protein involved in a variety of biological processes such as angiogenesis, tumorigenesis and immunomodulation. It was usually overexpressed in many cancer cell lines and correlated with poor prognosis of breast cancer. Positron emission tomography (PET) is an advanced imaging technique for detecting the function and metabolism of tumor-associated molecules in real time, dynamically, quantitatively and noninvasively.
View Article and Find Full Text PDFBiophys J
July 2024
Department of Chemistry, The University of Texas at Austin, Austin, Texas. Electronic address:
Cell signaling is an important process involving complex interactions between lipids and proteins. The myristoylated alanine-rich C-kinase substrate (MARCKS) has been established as a key signaling regulator, serving a range of biological roles. Its effector domain (ED), which anchors the protein to the plasma membrane, induces domain formation in membranes containing phosphatidylinositol 4,5-bisphosphate (PIP) and phosphatidylserine (PS).
View Article and Find Full Text PDFHell J Nucl Med
November 2023
Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
Objective: To construct a novel targeted drug delivery nanoprobe: iodine-131-arginine-glycine-aspartate-tyrosine-cysteine peptide-polyethylene glycol-fifth generation polyamide-amine-docetaxel (I-RGDyC-PEG-PAMAM-DTX) and to investigate its physicochemical properties and biological activity.
Materials And Methods: Docetaxel was wrapped by solvent volatilization method, and the regression curve of DTX was constructed by high-performance liquid chromatography to determine its drug loading. The particle size of RGDyC-PEG-PAMAM-DTX was detected by dynamic light scattering.
ACS Appl Mater Interfaces
January 2023
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
The self-assembling behavior of peptides and derivatives is crucial in the natural process to construct various architectures and achieve specific functions. However, the surface or interfacial self-assembly, in particular, on the surface of micro- or nanoparticles is even less systematically investigated. Here, uniform porous CaCO microparticles were prepared with different charged, hydrophobic and hydrophilic surfaces to assess the self-assembling behavior of dipeptides composed of various sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!