Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polyfluorene end-capped with N-(2-benzothiazole)-1,8-naphthalimide (PF-BNI) is a highly fluorescent material with fluorescence emission modulated by solvent polarity. Its low energy excited state is assigned as a mixed configuration state between the singlet S(1) of the fluorene backbone (F) with the charge transfer (CT) of the end group BNI. The triexponential fluorescence decays of PF-BNI were associated with fast energy migration to form an intrachain charge-transfer (ICCT) state, polyfluorene backbone decay, and ICCT deactivation. Time-resolved fluorescence anisotropy exhibited biexponential relaxation with a fast component of 12-16 ps in addition to a slow one in the range 0.8-1.4 ns depending on the solvent, showing that depolarization occurs from two different processes: energy migration to form the ICCT state and slow rotational diffusion motion of end segments at a longer time. Results from femtosecond transient absorption measurements agreed with anisotropy decay and showed a decay component of about 16 ps at 605 nm in PF-BNI ascribed to the conversion of S(1) to the ICCT excited state. From the ratio of asymptotic and initial amplitudes of the transient absorption measurement, the efficiency of intrachain ICCT formation is estimated in 0.5, which means that, on average, half of the excited state formed in a BNI-(F)(n)-BNI chain with n = 32 is converted to its low energy intrachain charge-transfer (ICCT) state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp108168f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!