Nuclear protein extraction from frozen porcine myocardium.

J Physiol Biochem

Department of Biochemistry, Cardiovascular Research Institute COEUR, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.

Published: June 2011

Protocols for the extraction of nuclear proteins have been developed for cultured cells and fresh tissue, but sometimes only frozen tissue is available. We have optimized the homogenization procedure and subsequent fractionation protocol for the preparation of nuclear protein extracts from frozen porcine left ventricular (LV) tissue. This method gave a highly reproducible protein yield (6.5±0.7% of total protein; mean±SE, n=9) and a 6-fold enrichment of the nuclear marker protein B23. The nuclear protein extracts were essentially devoid of cytosolic, myofilament, and histone proteins. Compared to nuclear extracts from fresh LV tissue, some loss of nuclear proteins to the cytosolic fraction was observed. Using this method, we studied the distribution of tyrosine phosphorylated signal transducer and activator of transcription 3 (PY-STAT3) in LV tissue of animals treated with the β-agonist dobutamine. Upon treatment, PY-STAT3 increased 30.2±8.5-fold in total homogenates, but only 6.9±2.1-fold (n=4, P=0.03) in nuclear protein extracts. Of all PY-STAT3 formed, only a minor fraction appeared in the nuclear fraction. This simple and reproducible protocol yielded nuclear protein extracts that were highly enriched in nuclear proteins with almost complete removal of cytosolic and myofilament proteins. This nuclear protein extraction protocol is therefore well-suited for nuclear proteome analysis of frozen heart tissue collected in biobanks.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13105-010-0059-xDOI Listing

Publication Analysis

Top Keywords

nuclear protein
24
protein extracts
16
nuclear
13
nuclear proteins
12
protein extraction
8
frozen porcine
8
fresh tissue
8
protein
8
cytosolic myofilament
8
tissue
6

Similar Publications

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.

View Article and Find Full Text PDF

Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported.

View Article and Find Full Text PDF

SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition.

Sci Adv

January 2025

Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.

View Article and Find Full Text PDF

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!