The sensitivity of a microfluidic impedance flow cytometer is governed by the dimensions of the sample analysis volume. A small volume gives a high sensitivity, but this can lead to practical problems including fabrication and clogging of the device. We describe a microfluidic impedance cytometer which uses an insulating fluid to hydrodynamically focus a sample stream of particles suspended in electrolyte, through a large sensing volume. The detection region consists of two pairs of electrodes fabricated within a channel 200 µm wide and 30 µm high. The focussing technique increases the sensitivity of the system without reducing the dimensions of the microfluidic channel. We demonstrate detection and discrimination of 1 µm and 2 µm diameter polystyrene beads and also Escherichia coli. Impedance data from single particles are correlated with fluorescence emission measured simultaneously. Data are also compared with conventional flow cytometry and dynamic light scattering: the coefficient of variation (CV) of size is found to be comparable between the systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0lc00099j | DOI Listing |
Anal Chim Acta
January 2025
Department of Biomedical Engineering, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea. Electronic address:
Glycosylation, the intricate process of adding carbohydrate motifs to proteins, lipids, and exosomes on the cell surface, is crucial for both physiological and pathological mechanisms. Alterations in glycans significantly affect cancer cell metastasis by mediating cell-cell and cell-matrix interactions. The subtle changes in glycosylation during malignant transformations highlight the importance of analyzing cell and exosome surface glycosylation for prognostic and early treatment strategies in cancer.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.
This paper introduces a novel contactless single-chip detector that utilizes impedance-to-digital conversion technology to measure impedance in the microfluidic channel or capillary format analytical device. The detector is designed to operate similarly to capacitively coupled contactless conductivity detectors for capillary electrophoresis or chromatography but with the added capability of performing frequency sweeps up to 200 kHz. At each recorded data point, impedance and phase-shift data can be extracted, which can be used to generate impedance versus frequency plots, or phase-shift versus frequency plots.
View Article and Find Full Text PDFSci Rep
January 2025
University of Novi Sad, BioSense Institute, Dr Zorana Djindjica 1, Novi Sad, 21000, Serbia.
Although various sensors specifically developed for target analytes are available, affordable biosensing solutions with broad applicability are limited. In this study, a cost-effective biosensor for detecting human epidermal growth factor receptor 2 (HER2) was developed using custom-made gold leaf electrodes (GLEs). A novel strategy for antibody immobilization on a gold surface, for the first time mediated by protein L and HER2-specific antibody trastuzumab, was examined using commercial screen-printed gold electrodes and GLEs.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients' survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA).
View Article and Find Full Text PDFBiomed Phys Eng Express
December 2024
Faculty of Clinical Medicine, Hanoi University of Public Health, Hanoi, Vietnam.
This study proposed a microfluidic chip for the detection and quantification of NSE proteins, aimed at developing a rapid point-of-care testing system for early lung cancer diagnosis. The proposed chip structure integrated an electrochemical biosensor within a straight PDMS microchannel, enabling a significant reduction in sample volume. Additionally, a method was developed to deposit silver and silver chloride layers onto the reference electrode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!