Background: Molecular diagnostic methods can complement existing tools to improve the diagnosis of malaria. However, they require good laboratory infrastructure thereby restricting their use to reference laboratories and research studies. Therefore, adopting molecular tools for routine use in malaria endemic countries will require simpler molecular platforms. The recently developed loop-mediated isothermal amplification (LAMP) method is relatively simple and can be improved for better use in endemic countries. In this study, we attempted to improve this method for malaria diagnosis by using a simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in one platform. We refer to this as the RealAmp method.
Methodology And Significant Findings: Published genus-specific primers were used to test the utility of this method. DNA derived from different species of malaria parasites was used for the initial characterization. Clinical samples of P. falciparum were used to determine the sensitivity and specificity of this system compared to microscopy and a nested PCR method. Additionally, directly boiled parasite preparations were compared with a conventional DNA isolation method. The RealAmp method was found to be simple and allowed real-time detection of DNA amplification. The time to amplification varied but was generally less than 60 minutes. All human-infecting Plasmodium species were detected. The sensitivity and specificity of RealAmp in detecting P. falciparum was 96.7% and 91.7% respectively, compared to microscopy and 98.9% and 100% respectively, compared to a standard nested PCR method. In addition, this method consistently detected P. falciparum from directly boiled blood samples.
Conclusion: This RealAmp method has great potential as a field usable molecular tool for diagnosis of malaria. This tool can provide an alternative to conventional PCR based diagnostic methods for field use in clinical and operational programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966401 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013733 | PLOS |
West Afr J Med
September 2024
Department of Paediatrics, Federal Teaching Hospital, Ido-Ekiti. Email: Tel: +2348035741951.
Background: The vital statistics in the third world countries are poor and have witnessed minimal improvement over the years with childhood mortality in Nigeria remaining one of the highest among the developing countries despite various child survival programmes. Child survival strategies can only be efficient if the major reasons for morbidity are known. The objective of this retrospective study was to review the patterns of childhood mortality at the emergency room of the Federal Teaching Hospital, Ido-Ekiti (FETHI).
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.
Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.
View Article and Find Full Text PDFMalar J
January 2025
Department of Parasitology-Mycology and Tropical Medicine, Université Des Sciences de La Santé de Libreville, BP 4009, Libreville, Gabon.
Background: The negative impact of COVID-19 pandemic on healthcare service utilization has been reported in several countries. In Gabon, data on the preparedness for future pandemic are lacking. The aim of the present study was to assess the trends of hospital attendance, malaria and self-medication prevalences as well as ITN use before and during Covid-19 first epidemic waves in a paediatric wards of a sentinel site for malaria surveillance, in Libreville, Gabon.
View Article and Find Full Text PDFPathogens
January 2025
Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.
Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Space Robotics Research Group (SpaceR), Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, L-1855 Luxembourg, Luxembourg.
Malaria remains a global health concern, with 249 million cases and 608,000 deaths being reported by the WHO in 2022. Traditional diagnostic methods often struggle with inconsistent stain quality, lighting variations, and limited resources in endemic regions, making manual detection time-intensive and error-prone. This study introduces an automated system for analyzing Romanowsky-stained thick blood smears, focusing on image quality evaluation, leukocyte detection, and malaria parasite classification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!