We describe an encrypted holographic data-storage system that combines orthogonal-phase-code multiplexing with a random-phase key. The system offers the security advantages of random-phase coding but retains the low cross-talk performance and the minimum code storage requirements typical in an orthogonal-phase-code-multiplexing system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.34.006012 | DOI Listing |
Sci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Vanadium dioxide (VO) exhibits exceptional phase transition characteristics that enable dynamic manipulation of electromagnetic wave. In this study, a novel design of bilayer isotropic metasurface is introduced. It leverages insulating-to-metallic phase transition of VO to enable broadband holography for terahertz wave.
View Article and Find Full Text PDFNano Lett
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
The complete manipulation of Jones matrix phase-channels using metasurfaces brings forth unparalleled possibilities across diverse wavefront modulation applications. Traditionally, achieving independent control over all four phase-channels usually involves the introduction of chirality with multilayer or three-dimensional metasurfaces. Here, we present a general chirality-free method that relies on polarization base transformation with a planar minimalist metasurface, effectively decoupling the four Jones matrix phase-channels, thereby unleashing the fundamental boundaries imposed by conventional linear or circular polarization bases.
View Article and Find Full Text PDFACS Nano
December 2024
Electronic Information School, Wuhan University, Wuhan 430072, China.
Heading toward the next-generation intelligent optical device, the meta-optics active tunability is one of the most desirable properties to expand its versatility beyond the traditional optical devices. Despite its advances via various tunable approaches, the encoding freedom of tuning capability still critically restricts its widespread engagement and dynamics in real-life applications. Here, we present a gesture-interactive scheme by topography flexible metasurfaces (TFMs) to expand the encoding freedom for the tuning capability.
View Article and Find Full Text PDFNanophotonics
April 2024
Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan, 430072, China.
Recently, multifunctional metasurface has showcased its powerful functionality to integrate nanoprinting and holography, and display ultracompact meta-images in near- and far-field simultaneously. Herein, we propose a tri-channel metasurface which can further extend the meta-imaging ranges, with three independent images located at the interface, Fresnel and Fourier domains, respectively. Specifically, a structural-color nanoprinting image is decoded right at the interface of the metasurface, enabled by varying the dimensions of nanostructures; a Fresnel holographic image and another Fourier holographic image are present at the Fresnel and Fourier (far-field) domains, respectively, enabled by geometric phase.
View Article and Find Full Text PDFNanophotonics
December 2023
School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria 3800, Australia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!