AI Article Synopsis

  • Mutations in the HFE gene cause hereditary hemochromatosis, leading to iron overload due to low hepcidin levels, which also affects iron uptake during red blood cell production.
  • Researchers used Hfe-KO mice to show that the absence of Hfe allows for faster recovery from anemia and enhances iron mobilization during increased blood cell production.
  • The study reveals that Hfe limits iron absorption in erythroid cells and that understanding its role could help improve treatments for hemochromatosis.

Article Abstract

In hereditary hemochromatosis, mutations in HFE lead to iron overload through abnormally low levels of hepcidin. In addition, HFE potentially modulates cellular iron uptake by interacting with transferrin receptor, a crucial protein during erythropoiesis. However, the role of HFE in this process was never explored. We hypothesize that HFE modulates erythropoiesis by affecting dietary iron absorption and erythroid iron intake. To investigate this, we used Hfe-KO mice in conditions of altered dietary iron and erythropoiesis. We show that Hfe-KO mice can overcome phlebotomy-induced anemia more rapidly than wild-type mice (even when iron loaded). Second, we evaluated mice combining the hemochromatosis and β-thalassemia phenotypes. Our results suggest that lack of Hfe is advantageous in conditions of increased erythropoietic activity because of augmented iron mobilization driven by deficient hepcidin response. Lastly, we demonstrate that Hfe is expressed in erythroid cells and impairs iron uptake, whereas its absence exclusively from the hematopoietic compartment is sufficient to accelerate recovery from phlebotomy. In summary, we demonstrate that Hfe influences erythropoiesis by 2 distinct mechanisms: limiting hepcidin expression under conditions of simultaneous iron overload and stress erythropoiesis, and impairing transferrin-bound iron uptake by erythroid cells. Moreover, our results provide novel suggestions to improve the treatment of hemochromatosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056475PMC
http://dx.doi.org/10.1182/blood-2010-09-307462DOI Listing

Publication Analysis

Top Keywords

hfe-ko mice
12
iron uptake
12
iron
11
erythropoiesis hfe-ko
8
hfe
8
role hfe
8
erythroid iron
8
iron overload
8
hfe modulates
8
dietary iron
8

Similar Publications

Classic hereditary hemochromatosis (HH) is an autosomal recessive iron-overload disorder resulting from loss-of-function mutations of the HFE gene. Patients with HH exhibit excessive hepatic iron accumulation that predisposes these patients to liver disease, including the risk for developing liver cancer. Chronic iron overload also poses a risk for the development of metabolic disorders such as obesity, type 2 diabetes, and insulin resistance.

View Article and Find Full Text PDF

Neutrophils apply several antimicrobial strategies including degranulation, phagocytosis, the generation of reactive oxygen species (ROS) and the release of neutrophil extracellular traps (NETs) to fight pathogens. Iron is considered to be an invaluable constituent of host immune defense and plays a dual role in immunity. It is a well-known component of antimicrobial proteins and is a necessary microelement for pathogen survival.

View Article and Find Full Text PDF

Background And Aims: Bone morphogenetic proteins BMP2 and BMP6 play key roles in systemic iron homeostasis by regulating production of the iron hormone hepcidin. The homeostatic iron regulator (HFE) also regulates hepcidin through a mechanism that intersects with the BMP-mothers against decapentaplegic homolog 1/5/8 (SMAD1/5/8) pathway. However, the relative roles of BMP2 compared with BMP6 and whether HFE regulates hepcidin through a BMP2-dependent mechanism remain uncertain.

View Article and Find Full Text PDF

HFE-hemochromatosis is a disease characterized by a systemic iron overload phenotype mainly associated with mutations in the HFE protein (HFE) gene. Osteoarthritis (OA) has been reported as one of the most prevalent complications in HFE-hemochromatosis patients, but the mechanisms associated with its onset and progression remain incompletely understood. In this study, we have characterized the response to high iron concentrations of a primary culture of articular chondrocytes isolated from newborn Hfe-KO mice and compared the results with that of a similar experiment developed in cells from C57BL/6 wild-type (wt) mice.

View Article and Find Full Text PDF

Osteoporosis is associated with chronic iron overload secondary to hereditary hemochromatosis (HH), but the causative mechanisms are incompletely understood. The main objective of this study was to investigate the role of dietary iron on osteoporosis, using as biological model the Hfe-KO mice, which have a systemic iron overload. We showed that these mice show an increased susceptibility for developing a bone loss phenotype compared to WT mice, which can be exacerbated by an iron rich diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!