AI Article Synopsis

  • Targeted genome enrichment is utilized to enhance DNA sequencing efficiency, using a new scalable protocol based on the Selector technique.
  • The method improves coverage and is compatible with next-generation sequencing (NGS) for better analysis of cancer-related genes.
  • Results showed 94% specificity and 98% coverage in various tissue samples, with high reproducibility and the ability to detect DNA variations, all achieved in under 24 hours without special equipment.

Article Abstract

Targeted genome enrichment is a powerful tool for making use of the massive throughput of novel DNA-sequencing instruments. We herein present a simple and scalable protocol for multiplex amplification of target regions based on the Selector technique. The updated version exhibits improved coverage and compatibility with next-generation-sequencing (NGS) library-construction procedures for shotgun sequencing with NGS platforms. To demonstrate the performance of the technique, all 501 exons from 28 genes frequently involved in cancer were enriched for and sequenced in specimens derived from cell lines and tumor biopsies. DNA from both fresh frozen and formalin-fixed paraffin-embedded biopsies were analyzed and 94% specificity and 98% coverage of the targeted region was achieved. Reproducibility between replicates was high (R(2) = 0, 98) and readily enabled detection of copy-number variations. The procedure can be carried out in <24 h and does not require any dedicated instrumentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025563PMC
http://dx.doi.org/10.1093/nar/gkq1005DOI Listing

Publication Analysis

Top Keywords

targeted resequencing
4
resequencing candidate
4
candidate genes
4
genes selector
4
selector probes
4
probes targeted
4
targeted genome
4
genome enrichment
4
enrichment powerful
4
powerful tool
4

Similar Publications

Unlabelled: Archaeal molecular biology has been a topic of intense research in recent decades as their role in global ecosystems, nutrient cycles, and eukaryotic evolution comes to light. The hypersaline-adapted archaeal species and serve as important model organisms for understanding archaeal genomics, genetics, and biochemistry, in part because efficient tools enable genetic manipulation. As a result, the number of strains in circulation among the haloarchaeal research community has increased in recent decades.

View Article and Find Full Text PDF

(1) Background: Most rare disease patients endure long delays in obtaining a correct diagnosis, the so-called "diagnostic odyssey", due to a combination of the rarity of their disorder and the lack of awareness of rare diseases among both primary care professionals and specialists. Next-generation sequencing (NGS) techniques that target genes underlying diverse phenotypic traits or groups of diseases are helping reduce these delays; (2) Methods: We used a combination of biochemical (thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry), NGS (resequencing gene panels) and splicing assays to achieve a complete diagnosis of three patients with suspected metachromatic leukodystrophy, a neurologic lysosomal disorder; (3) Results: Affected individuals in each family were homozygotes for harmful variants in the gene, one of them novel (c.854+1dup, in family 1) and the other already described (c.

View Article and Find Full Text PDF

Innovations in Transgene Integration Analysis: A Comprehensive Review of Enrichment and Sequencing Strategies in Biotechnology.

ACS Appl Mater Interfaces

January 2025

Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

Understanding the integration of transgene DNA (T-DNA) in transgenic crops, animals, and clinical applications is paramount for ensuring the stability and expression of inserted genes, which directly influence desired traits and therapeutic outcomes. Analyzing T-DNA integration patterns is essential for identifying potential unintended effects and evaluating the safety and environmental implications of genetically modified organisms (GMOs). This knowledge is crucial for regulatory compliance and fostering public trust in biotechnology by demonstrating transparency in genetic modifications.

View Article and Find Full Text PDF

Profiling of pathogenic variants in Japanese patients with sarcoglycanopathy.

Orphanet J Rare Dis

January 2025

Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.

Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.

View Article and Find Full Text PDF

Reframing Formalin: A Molecular Opportunity Enabling Historical Epigenomics and Retrospective Gene Expression Studies.

Mol Ecol Resour

January 2025

National Research Collections Australia, Commonwealth Scientific Industrial Research Organisation, Canberra, Australian Capital Territory, Australia.

Formalin preservation of museum specimens has long been considered a barrier to molecular research due to extensive crosslinking and chemical modification. However, recent optimisation of hot alkaline lysis and proteinase K digestion DNA extraction methods have enabled a growing number of studies to overcome these challenges and conduct genome-wide re-sequencing and targeted locus-specific sequencing. The newest, and perhaps most unexpected utility of formalin preservation in archival samples is its ability to preserve in situ DNA-protein interactions at a molecular level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!