Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pharmacological activation of peroxisome proliferator-activated receptor δ/β (PPARδ/β) improves glucose handling and insulin sensitivity. The target tissues of drug actions remain unclear. We demonstrate here that adenovirus-mediated liver-restricted PPARδ activation reduces fasting glucose levels in chow- and high fat-fed mice. This effect is accompanied by hepatic glycogen and lipid deposition as well as up-regulation of glucose utilization and de novo lipogenesis pathways. Promoter analyses indicate that PPARδ regulates hepatic metabolic programs through both direct and indirect transcriptional mechanisms partly mediated by its co-activator, PPARγ co-activator-1β. Assessment of the lipid composition reveals that PPARδ increases the production of monounsaturated fatty acids, which are PPAR activators, and reduces that of saturated FAs. Despite the increased lipid accumulation, adeno-PPARδ-infected livers exhibit less damage and show a reduction in JNK stress signaling, suggesting that PPARδ-regulated lipogenic program may protect against lipotoxicity. The altered substrate utilization by PPARδ also results in a secondary effect on AMP-activated protein kinase activation, which likely contributes to the glucose-lowering activity. Collectively, our data suggest that PPARδ controls hepatic energy substrate homeostasis by coordinated regulation of glucose and fatty acid metabolism, which provide a molecular basis for developing PPARδ agonists to manage hyperglycemia and insulin resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020731 | PMC |
http://dx.doi.org/10.1074/jbc.M110.138115 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!