Protein microarrays represent an emerging technology that promises to facilitate high-throughput proteomics. The major goal of this technology is to employ peptides, full-length proteins, antibodies, and small molecules to simultaneously screen thousands of targets for potential protein-protein interactions or modifications of the proteome. This article describes the performance of a set of peptide aptamers specific for the human papillomavirus (HPV) type 16 oncoproteins E6 and E7 in a microarray format. E6 and E7 peptide aptamer microarrays were probed with fluorescence-labeled lysates generated from HPV-infected cervical keratinocytes expressing both E6 and E7 oncoproteins. Peptide aptamer microarrays are shown to detect low levels of E6 and E7 proteins. Peptide aptamers specific for cellular proteins included on these microarrays suggested that expression of CDK2, CDK4, and BCL-6 may be affected by HPV infection and genome integration. We conclude that peptide aptamer microarrays represent a promising tool for proteomics and may be of value in biological and clinical investigations of cervical carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2010.10.038 | DOI Listing |
Diabetologia
January 2025
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA.
Type 1 diabetes is an autoimmune disease characterised by the destruction of pancreatic beta cells, resulting in lifelong insulin dependence. Although exogenous insulin can maintain glycaemic control, this approach does not protect residual or replacement pancreatic beta cells from immune-mediated death. Current therapeutics designed to protect functional beta cell mass or promote beta cell proliferation and regeneration can have off-target effects, resulting in higher dose requirements and adverse side effects.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Multiple receptor analysis-based DNA molecular computation has been developed to mitigate the off-target effect caused by nonspecific expression of cell membrane receptors. However, it is quite difficult to involve nanobodies into molecular computation with programmed recognition order because of the "always-on" response mode and the inconvenient molecular programming. Here we propose a spatial segregation-based molecular computing strategy with a shielded internal computing layer termed DNA nano-phage (DNP) to program nanobody into DNA molecular computation and build a series of kinetic models to elucidate the mechanism of microenvironment-confinement.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
The ERBB2 is one of the most studied genes in oncology for its significant role in human malignancies. The metastasis-associated properties that facilitate cancer metastasis can be enhanced by activating the ERBB2 receptor signaling pathways. Additionally, therapeutic resistance is conferred by ERBB2 overexpression via receptor-mediated antiapoptotic signals.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Biochemistry, National Chung Cheng University, 621301, Chia-Yi, Taiwan.
A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!