Challenges of antibacterial discovery revisited.

Ann N Y Acad Sci

Antibacterial Discovery Performance Unit, Infectious Diseases Center of Excellence for Drug Discovery, GlaxoSmithKline, Collegeville, Pennsylvania, USA.

Published: December 2010

The discovery of novel antibiotic classes has not kept pace with the growing threat of bacterial resistance. Antibiotic candidates that act at new targets or via distinct mechanisms have the greatest potential to overcome resistance; however, novel approaches are also associated with higher attrition and longer timelines. This uncertainty has contributed to the withdrawal from antibiotic programs by many pharmaceutical companies. Genomic approaches have not yielded satisfactory results, in part due to nascent knowledge about unprecedented molecular targets, the challenge of achieving antibacterial activity by lead optimization of enzyme inhibitors, and the limitations of compound screening libraries for antibacterial discovery. Enhanced diversity of compound screening banks, entry into new chemical space, and new screening technologies are currently being exploited to improve hit rates for antibacterial discovery. Antibacterial compound lead optimization faces hurdles associated with the high plasma exposures required for efficacy. Lead optimization would be enhanced by the identification of new antibiotic classes with improved tractability and by expanding the predictability of in vitro safety assays. Implementing multiple screening and target identification strategies is recommended for improving the likelihood of discovering new antibacterial compounds that address unmet needs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.2010.05828.xDOI Listing

Publication Analysis

Top Keywords

antibacterial discovery
12
lead optimization
12
antibiotic classes
8
compound screening
8
antibacterial
5
challenges antibacterial
4
discovery
4
discovery revisited
4
revisited discovery
4
discovery novel
4

Similar Publications

Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.

View Article and Find Full Text PDF

DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.

View Article and Find Full Text PDF

LTX-315 is a novel broad-spectrum antimicrobial peptide against clinical multidrug-resistant bacteria.

J Adv Res

January 2025

State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China. Electronic address:

Introduction: Infections stemming from multidrug-resistant bacteria present a substantial threat to public health today. Discovering or synthesizing novel compounds is crucial to alleviate this pressing situation.

Objective: The main purpose of this study is to verify the antibacterial activity of LTX-315 and explore its primary action mode.

View Article and Find Full Text PDF

Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.

View Article and Find Full Text PDF

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!