Treatment of M5076 wild-type cells with 50 ng/ml of 12-O-tetradecanoylphorbol-13-acetate (TPA) almost completely inhibited cellular proliferation. Continuous culture in the presence of TPA was used to derive four lines, one polyclonal (TPAR) and three clonally derived (TPAR-1, -2, and -3), which exhibited variable resistance to the antiproliferative effects of phorbol esters. Protein kinase C (PKC) activation and c-fos expression in wild-type cells and the stably resistant line (TPAR-3) were examined after phorbol ester treatment. Both lines exhibited a comparable rapid and transient induction of c-fos mRNA expression, but induction of c-fos protein was reduced markedly in the TPAR-3 cells. Similarly in both cell lines, prolonged culture in phorbol ester produced down-regulation of PKC, as measured by inducible Mr 80,000 phosphorylation and an in vitro PKC assay. This decrease in PKC levels was paralleled by a decrease in c-fos mRNA and protein induction. Thus, c-fos expression in both wild-type and TPAR-3 cells is a consequence of PKC activation, and the development of resistance to TPA-antiproliferative effects in the TPAR-3 cell line was not linked causally to alterations in PKC levels or the c-fos mRNA induction response. The malignant capacity of the TPAR line was not reduced relative to wild-type cells. PKC activation and c-fos mRNA expression do not appear to determine changes in the in vivo or in vitro growth behavior of M5076 cells, whereas variations in c-fos protein expression may determine the anti-proliferative response to tumor-promoting phorbol esters.
Download full-text PDF |
Source |
---|
Pain Rep
February 2025
Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.
Introduction: Ocular pain is a common complaint to eye care providers, associated with a variety of ocular conditions, among which dry eye disease (DED) is affecting millions of people worldwide. Despite being highly prevalent, ocular pain is not managed adequately in the clinic.
Objectives: The aim of this study was to investigate the analgesic potential of neurokinin-1 receptor (NK1R) antagonism in DED.
Scopolamine is the secondary metabolite of the Datura stramonium and act as a muscarinic receptor antagonist. Previous studies showed that scopolamine caused attention and memory deficit. However, the effects of scopolamine on specific cognitive functions, such as fear learning and social recognition, remain poorly understood.
View Article and Find Full Text PDFCell Signal
January 2025
Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, Zhejiang Province, PR China. Electronic address:
Background: While TRPA1 serves as a therapeutic target for nociceptive pain, its role in acute visceral pain induced by uterine cervical dilation (UCD) remains an enigma. This study aims to elucidate the upstream and downstream mechanisms of TRPA1 in the context of UCD-induced acute visceral pain.
Methods: The UCD rats were administered with SAH (inhibitor of the METTL3-METTL14 complex) via intrathecal tubing.
Neuroscience
January 2025
Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:
Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).
View Article and Find Full Text PDFEndocrinology
January 2025
Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden.
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!