In this study, PLGA microspheres were prepared using a water-in-oil-in-water emulsion/solvent evaporation technique. Some microspheres were coated with poly-L-lysine (an extracellular matrix (ECM) component), and then pluripotent P19 embryonic carcinoma cells were seeded on them. P19 cells attached onto the PLGA microspheres; subsequently, by adding retinoic acid (RA) to cell culture medium as a neurogenic inducer (RA was released from the microspheres), the cells differentiated into neural cells. Size and morphology of PLGA microspheres was characterized by scanning electron microscopy (SEM). Neurogenic differentiation was studied by immunofluorescent staining, real-time polymerase chain reaction (RT-PCR), and light microscopy. Histological assay showed that more cells attached onto microspheres coated with poly-L-lysine than the uncoated group. Immunofluoresent staining and RT-PCR analysis for ß-Tubulin, Nestin and Pax6 genes indicated differentiation of P19 cells into neural cells on both coated and uncoated microspheres. It was found that a high surface area of microspheres improves cell attachment and expansion, which was significantly increased in those coated with poly-L-lysine. Finally, these results highlight the versatility of these sample scaffolds as a model system for nerve tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.5301/ijao.2010.5981DOI Listing

Publication Analysis

Top Keywords

plga microspheres
16
neural cells
12
coated poly-l-lysine
12
microspheres
9
cells
9
cells neural
8
microspheres coated
8
p19 cells
8
cells attached
8
poly-l-lysine
4

Similar Publications

Vaccine Specifically for Immunocompromised Individuals against Superbugs.

ACS Nano

January 2025

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.

Immunocompromised populations, including cancer patients, elderly individuals, and those with chronic diseases, are the primary targets of superbugs. Traditional vaccines are less effective due to insufficient or impaired immune cells. Inspired by the "vanguard" effect of neutrophils (NE) during natural infection, this project leverages the ability of NE to initiate the NETosis program to recruit monocytes and DC cells, designing vaccines that can rapidly recruit immune cells and enhance the immune response.

View Article and Find Full Text PDF

Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.

View Article and Find Full Text PDF

Multi-Layered Microneedles Loaded with Microspheres.

AAPS PharmSciTech

January 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..

Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.

View Article and Find Full Text PDF

Functionalized Microsphere Platform Combining Nutrient Restriction and Combination Therapy to Combat Bacterial Infections.

ACS Appl Mater Interfaces

January 2025

Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.

The escalating prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a critical global health crisis, undermining the efficacy of conventional antibiotic therapies. This pressing challenge necessitates the development of innovative strategies to combat MDR pathogens. Advances in multifunctional drug delivery systems offer promising solutions to reduce or eradicate MDR bacteria.

View Article and Find Full Text PDF

The resection of bone tumors results in large bone defects with some residual tumor cells, and the treatment of this type of bone defect area often faces a dilemma, namely, the trade-off between bone repair and antitumor after the resection of bone tumors. In order to promote local bone repair, and at the same time inhibit tumor recurrence by continuous and controlled drug administration, we developed a multifunctional NIR-responsive scaffold, whose main components are polylactic acid and MXene, and loaded with PLGA/DOX microspheres, and we hope that the scaffold can take into account both antitumor and bone repair in the bidirectional modulation effect of NIR. The results showed that the scaffold with 1% MXene content had relatively good performance in photothermal therapy (PT) and other aspects, and it could be smoothly increased to 50 °C within 2 min under NIR illumination, and the drug release of microspheres was increased by 10% after illumination compared with that at body temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!