Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The molecular mechanisms underlying the pathophysiology of heat stress in the small intestine remain undefined. Furthermore, little information is available concerning changes in microRNA (miRNA) expression following heat stress. The present study sought to evaluate miRNA and mRNA expression profiles in the rat small intestine in response to heat stress. Male Sprague-Dawley rats were subjected to 2 h of heat stress daily for ten consecutive days. Rats were sacrificed at specific time points immediately following heat treatment, and morphological changes in the small intestine were determined. The miRNA and mRNA expression profiles from sample of small intestine were evaluated by microarray analysis. Heat stress caused pronounced morphological damage in the rat small intestine, most severe within the jejunum after 3 days of heat treatment. A mRNA microarray analysis found 270 genes to be up-regulated and 122 genes down-regulated (P ≤ 0.01, ≥2.0-fold change) in the jejunum after heat treatment. A miRNA microarray analysis found 18 miRNAs to be up-regulated and 11 down-regulated in the jejunum after heat treatment (P ≤ 0.05). Subsequent bioinformatic analyses of the differentially expressed mRNAs and miRNAs were carried out to integrate miRNA and mRNA expression and revealed that alterations in mRNA following heat stress were negatively correlated with miRNA expression. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of heat stress-induced injury in the small intestine, specifically with regard to miRNAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-010-0198-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!