Cigarette smoke extract promotes human vascular smooth muscle cell proliferation and survival through ERK1/2- and NF-κB-dependent pathways.

ScientificWorldJournal

Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Lund, Sweden.

Published: November 2010

Tobacco use is one of the major risk factors of cardiovascular disease. The underlying molecular mechanisms that link cigarette smoke to cardiovascular disease remain unclear. The present study was designed to examine the effects of dimethyl sulfoxide (DMSO)-soluble smoke particles (DSPs) on human aortic smooth muscle cell (HASMC) cultures, and to explore the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) and nuclear factor-kappaB (NF-κB) signal mechanisms involved. Serum-starved HASMCs were treated with DSPs for up to 48 h. DSPs promoted cell proliferation in a concentration-dependent manner from 0.05 to 0.2 μl/ml. Activation of ERK1/2 and NF-κB was seen after exposure to DSPs. This occurred in parallel with the increase in cell population, bromodeoxyuridine incorporation, and cyclinD1/cyclin-dependent kinase 4 expression. Blocking phosphorylation of ERK1/2 by MAPK inhibitors U0126 and PD98059, and inhibiting activation of NF-κB by IkappaB (IκB) kinase inhibitors wedelolactone or IMD-0354, abolished the DSP effects. However, either a p38 inhibitor (SB203580) or an inhibitor of lipopolysaccharide (polymyxin B), or nicotinic receptor blockers (mecamylamine and alpha-bungarotoxin), did not inhibit a DSP-induced increase in the cell population. DSPs increased the expression of intercellular adhesion molecule 1 and the release of interleukin-6 in HASMCs, both of which were inhibited by ERK1/2 or NF-κB pathway inhibitors. Furthermore, cell apoptosis and necrosis were found in serum-starved HASMCs. DSPs decreased cell death and increased B-cell leukemia/lymphoma 2 expression. Blocking phosphorylation of ERK1/2 or NF-κB attenuated DSP-induced cell death inhibition. Cigarette smoke particles stimulate HASMC proliferation and inhibit cell death. The intracellular signal mechanisms behind this involve activation of ERK1/2 and NF-κB pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5763733PMC
http://dx.doi.org/10.1100/tsw.2010.201DOI Listing

Publication Analysis

Top Keywords

erk1/2 nf-κb
16
cigarette smoke
12
cell death
12
cell
9
smooth muscle
8
muscle cell
8
cell proliferation
8
cardiovascular disease
8
smoke particles
8
protein kinase
8

Similar Publications

Nanosize Non-Viral Gene Therapy Reverses Senescence Reprograming Driven by PBRM1 Deficiency to Suppress iCCA Progression.

Adv Sci (Weinh)

January 2025

Department of Hepatic Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.

Polybromo-1 (PBRM1) serves as a crucial regulator of gene transcription in various tumors, including intrahepatic cholangiocarcinoma (iCCA). However, the exact role of PBRM1 in iCCA and the mechanism by which it regulates downstream target genes remain unclear. This research has revealed that PBRM1 is significantly downregulated in iCCA tissues, and this reduced expression is linked to aggressive clinicopathological features and a poor prognosis.

View Article and Find Full Text PDF

Tick salivary cystatin Iristatin limits the virus replication in skin of tick-borne encephalitis virus-infected mice.

Parasitol Res

January 2025

Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.

Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection.

View Article and Find Full Text PDF

Signalling pathways involved in urotensin II induced ventricular myocyte hypertrophy.

PLoS One

January 2025

Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom.

Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved.

View Article and Find Full Text PDF

Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.

Chin Med J (Engl)

January 2025

Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.

Background: Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.

View Article and Find Full Text PDF

Leydig cells play a crucial role in male reproductive physiology, and their dysfunction is often associated with male infertility. Hypoxia negatively affects the structure and function of Leydig cells. This study aimed to investigate the impact of melatonin on the c-Jun N-terminal kinase (Jnk), P38, and extra-cellular signal-regulated kinases 1 and 2 (Erk1/2) mitogen-activated protein kinase (MAPK) signaling pathways in TM3 mouse Leydig cells under hypoxia induced by cobalt (II) chloride (CoCl).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!