Despite the exploration of a large number of disparate drugs in animal models and clinical trials, no pharmacological intervention, with the exception of aggressive lipid lowering therapy has reduced late vein graft failure in man. The importance of devising more effective strategies is exemplified by the enormous economic consequences of vein graft failure. Worldwide, there are currently more than 1,000,000 coronary artery bypass graft surgery (CABG) operations a year, the same number of patients undergoing infrainguinal bypass for vascular diseases of the lower limb. The pathophysiology of vein graft failure is complex, involving disparate factors that include adhesion of platelets and leukocytes, rheological forces, metalloproteinase expression, proliferation and migration of vascular smooth muscle cells, neointima formation, oxidative stress, hypoxia and neural re-organisation. Although this diverse etiology may seem to preclude any single drug type as being effective in mediating vein graft failure: one factor that is involved in every facet of vein graft pathobiology is endothelin-1 (ET-1). As such a single drug type (ET(A) antagonist) may prove to be the magic bullet in this scenario. Thus, in this review, we will consider the etiology of vein graft disease in relation to ET-1 and will then present an argument (with evidence) that specific ET(A) receptor antagonists constitute a potentially effective means of preventing vein graft failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2010.10.018 | DOI Listing |
Updates Surg
January 2025
Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Wuhan, 1095, China.
The liver segmentation method proposed by Couinaud is widely accepted by surgeons because of its convenience and practicality. However, this conventional eight-segment classification does not reflect realistic details of the liver and thus requires further adjustments to promote improvements in surgical strategies. This study aimed to explore the ramification patterns of the hepatic vasculature comprehensively.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Dept. of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.
Background: Areas of conduction disorders play an important role in both initiation and perpetuation of AF and can be recognized by specific changes in unipolar potential morphology. For example, EGM fractionation may be caused by asynchronous activation of adjacent cardiomyocytes because of structural barriers such as fibrotic strands. However, it is unknown whether there are sex differences in unipolar potential morphology.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 E 68th St, New York, NY, 10065, USA.
Background: Baseline systemic inflammation is associated with worse long-term outcomes after coronary artery bypass grafting [CABG], but the mechanisms of this association are unclear. This study aims to explore the association between pre-operative white blood cell [WBC] count and CABG graft failure.
Methods: We pooled individual patient data from two randomized clinical trials with systematic CABG graft imaging.
Eur J Orthop Surg Traumatol
January 2025
Shonan Kamakura General Hospital, Kamakura, Japan.
Introduction: Blunt brachial artery injuries (BAI) require reconstruction with an extensive vein graft due to the wide area of arterial damage. In the upper arm, safe options for pedicle flaps are limited, and selecting recipient vessels for free-flap surgery is challenging, complicating the treatment of soft tissue injuries associated with blunt BAI. This study aimed to analyze the characteristics and soft tissue reconstruction of blunt BAI and propose treatment strategies for treating associated soft tissue injuries.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China. Electronic address:
Unlabelled: Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension.
Methods: Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!